精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长等于的正方形,均为正三角形,在三棱锥中:

1)证明:平面平面

2)若点在棱上运动,当直线与平面所成的角最大时,求二面角的正切值.

【答案】1)证明见解析(2

【解析】

1)取中点,连接,则,由此能证明平面平面2)由,得平面,从而是直线与平面所成角,且,进而当最短时,即中点时,最大,由平面,得,以所在直线分别为轴,轴,轴,建立空间直角坐标系,利用向量法先求出二面角的余弦值,根据同角三角函数关系即可求出正切值.

(1 )三棱锥(如图1)的平面展开图(如图2)中

四边形为边长等于的正方形,均为正三角形,

中点,连接

平面,

平面,

平面平面

2)由(1)知

,

平面

是直线与平面所成角,且

最短时,即中点时,最大,

平面,得

所在直线分别为轴,轴,轴,建立空间直角坐标系,如图:

设平面的法向量,

,取,得

设平面的法向量

,取,得

设二面角的平面角为

所以

二面角的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校高一、高二、高三三个年级共有名教师,为调查他们的备课时间情况,通过分层抽样获得了名教师一周的备课时间,数据如下表(单位:小时).

高一年级

高二年级

高三年级

(1)试估计该校高三年级的教师人数;

(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,求该周甲的备课时间不比乙的备课时间长的概率;

(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是 (单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为,表格中的数据平均数记为,试判断的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500/件的新产品,规定试销时销售单价不低于成本单价,又不高于800/件.经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系(如图所示).

1)由图象,求函数的表达式;

2)设公司获得的毛利润(毛利润=销售总价﹣成本总价)为元.试用销售单价表示毛利润,并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府为了促进低碳环保的出行方式,从全市在册的50000辆电动车中随机抽取100辆,委托专业机构免费为它们进行电池性能检测.电池性能分为需要更换、尚能使用、较好、良好四个等级,并分成电动自行车和电动汽车两个群体分别进行统计,样本分布如下图.

(1)从电池性能较好的电动车中,采用分层抽样的方法随机抽取了9辆,求再从这9辆电动车中随机抽取2辆,至少有1辆为电动汽车的概率;

(2)为提高市民对电动车的使用热情,市政府准备为电动车车主一次性发放补助,标准如下:

①电动自行车每辆补助300元;

②电动汽车每辆补助500元;

③对电池需要更换的电动车每辆额外补助400元.

利用样本估计总体,试估计市政府执行此方案的预算(单位:万元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国已经成为全球最大的电商市场,但是实体店仍然是消费者接触商品和品牌的重要渠道.某机构随机抽取了年龄介于10岁到60岁的消费者200人,对他们的主要购物方式进行问卷调查.现对调查对象的年龄分布及主要购物方式进行统计,得到如下图表:

主要购物方式

年龄阶段

网络平台购物

实体店购物

总计

40岁以下

75

40岁或40岁以上

55

总计

(1)根据已知条件完成上述列联表,并据此资料,能否在犯错误的概率不超过的前提下,认为消费者主要的购物方式与年龄有关?

(2)用分层抽样的方法从通过网络平台购物的消费者中随机抽取8人,然后再从这8名消费者中抽取5名进行答谢.设抽到的消费者中40岁以下的人数为,求的分布列和数学期望.

参考公式:,其中.

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是全称量词命题还是存在量词命题.

1)梯形的对角线相等;

2)存在一个四边形有外接圆

3)二次函数的图象都与x轴相交;

4)存在一对实数xy,使成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题是否正确,正确的说明理由,错误的举例说明.

1)一条直线平行于一个平面,另一条直线与这个平面垂直,则这两条直线互相垂直;

2)如果平面平面,平面平面,那么平面与平面所成的二面角和平面与平面所成的二面角相等或互补;

3)如果平面平面,平面平面,那么平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①;根据2010年至2016年的数据(时间变量的值依次为)建立模型②

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;

(2)你认为用哪个模型得到的预测值更可靠?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017527日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?

非围棋迷

围棋迷

合计

10

55

合计

(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案