精英家教网 > 高中数学 > 题目详情
椭圆:
x2
a2
+
y2
b2
=1
(a>b>0),左右焦点分别是F1,F2,焦距为2c,若直线y=
3
(x+c)
与椭圆交于M点,满足∠MF1F2=2∠MF2F1,则离心率是(  )
分析:依题意知,直线y=
3
(x+c)经过椭圆的左焦点F1(-c,0),且倾斜角为60°,从而知∠MF2F1=30°,设|MF1|=x,利用椭圆的定义即可求得其离心率.
解答:解:∵椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0),作图如右图:
∵椭圆的焦距为2c,
∴直线y=
3
(x+c)经过椭圆的左焦点F1(-c,0),又直线y=
3
(x+c)与椭圆交于M点,
∴倾斜角∠MF1F2=60°,又∠MF1F2=2∠MF2F1
∴∠MF2F1=30°,
∴∠F1MF2=90°.
设|MF1|=x,则|MF2|=
3
x,|F1F2|=2c=2x,故x=c.
∴|MF1|+|MF2|=(
3
+1)x=(
3
+1)c,
又|MF1|+|MF2|=2a,
∴2a=(
3
+1)c,
∴该椭圆的离心率e=
c
a
=
2
3
+1
=
3
-1.
故选:B.
点评:本题考查椭圆的简单性质,着重考查直线与椭圆的位置关系,突出椭圆定义的考查,理解得到直线y=
3
(x+c)经过椭圆的左焦点F1(-c,0)是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

-1<a<-
1
2
,则椭圆
x2
a2
+
y2
(a+1)2
=1
的离心率的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

“a2>1”是“方程
x2
a2
+y2=1表示椭圆”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个结论其中正确的是(  )
①若实数x,y满足(x-2)2+y2=3,则
y
x
的最大值为
3
;②椭圆
x2
4
+
y2
3
=1
与椭圆
x2
2
+
2y2
3
=1
有相同的离心率;③双曲线
x2
2-k
+
y2
3-k
=1
的焦点坐标是(1,0),(-1,0)④圆x2+y2=1与直线y=kx+2没有 公共点的充要条件是k∈(-
3
3
)
⑤设a>1,则双曲线
x2
a2
-
y2
(a+1)2
=1
的离心率e的取值范围是(
2
5
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•温州二模)椭圆
x2
a2
+y2=1的一个焦点在抛物线y2=4x的准线上,则该椭圆的离心率为(  )

查看答案和解析>>

同步练习册答案