精英家教网 > 高中数学 > 题目详情

(08年黄冈中学一模理) (本小题满分13分)过抛物线的焦点F作直线l与抛物线交于A、B.

(1)求证:不是直角三角形;

(2)当l的斜率为时,抛物线上是否存在点C,使为直角三角形且B为直角(点B位于x轴下方)?若存在,求出所有的点C;若不存在,说明理由.

解析:(1)∵焦点F为(1,0),过点F且与抛物线交于点A、B的直线可设为,代入抛物线得:,则有……2分

进而……4分

为钝角,故不是直角三角形.……6分

(2)由题意得AB的方程为

代入抛物线,求得……8分

假设抛物线上存在点,使为直角三角形且C为直角,此时,以AC为直径的圆的方程为,将A、B、C三点的坐标代入得:

整理得:……10分

解得对应点B对应点C……12分

则存在使为直角三角形.

    故满足条件的点C有一个:……13分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年黄冈中学一模理) (本小题满分12分)一个袋子中装有m个红球和n个白球(m>n≥4),它们除颜色不同外,其余都相同,现从中任取两个球.

(1)若取出两个红球的概率等于取出一红一白两个球的概率的整数倍,求证:m必为奇数;

(2)若取出两个球颜色相同的概率等于取出两个颜色不同的概率,求满足m+n≤20的所有数组(m, n

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年黄冈中学一模理) (本小题满分12分)已知A、B、C的三个内角,向量,且

(1)求的值;

(2)求C的最大值,并判断此时的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年黄冈中学一模理) (本小题满分14分)对于函数f(x),若存在,使成立,则称x0f(x)的不动点. 如果函数有且仅有两个不动点0,2,且

(1)试求函数f(x)的单调区间;

(2)已知各项不为零且不为1的数列{an}满足,求证:

(3)设为数列{bn}的前n项和,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年黄冈中学一模文)  (12分) 如图,在梯形ABCD中,ABCDAD=DC=CB=a , ∠ABC=60°.平面ACEF⊥平面ABCD,且四边形ACEF是矩形,AF=a.

(I)求证:ACBE

(II)求二面角BEFD的余弦值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年黄冈中学一模文)   (14分)已知椭圆过定点A(1,0),焦点在x轴上,且离心率e满足

(I)求的取值范围;

(II)若椭圆与的交于点B,求点B的横坐标的取值范围;

(Ⅲ)在条件(II)下,现有以A为焦点,过点B且开口向左的抛物线,抛物线的顶点坐标为M(m,0),求实数m的取值范围.

查看答案和解析>>

同步练习册答案