分析 通过计算出前几项的值确定周期,进而可得结论.
解答 解:依题意,a2=$\frac{1+{a}_{1}}{1-{a}_{1}}$=$\frac{1+2}{1-2}$=-3
a3=$\frac{1+{a}_{2}}{1-{a}_{2}}$=$\frac{1-3}{1+3}$=-$\frac{1}{2}$
a4=$\frac{1+{a}_{3}}{1-{a}_{3}}$=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$
a5=$\frac{1+{a}_{4}}{1-{a}_{4}}$=$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=2,
∴数列{an}是以4为周期的周期数列,
∵2015=503×4+3,
∴a2015=a3=-$\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.
点评 本题考查数列的通项,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1.5% | B. | 1.6% | C. | 1.7% | D. | 1.8% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com