【题目】对于函数f(x)=ax2+bx+(b﹣1)(a≠0)
(1)当a=1,b=﹣2时,求函数f(x)的零点;
(2)若对任意实数b,函数恒有两个相异的零点,求实数a的取值范围.
【答案】
(1)解:∵a=1,b=﹣2
∴f(x)=x2﹣2x﹣3
令f(x)=0,则x2﹣2x﹣3=0
∴x=3或x=﹣1
此时f(x)的零点为3和﹣1
(2)解:由题意可得a≠0
则△=b2﹣4a(b﹣1)>0对于b∈R恒成立
即△′=16a2﹣16a<0
∴0<a<1
【解析】(1)把所给的数字代入解析式,得到函数的解析式,要求函数的零点,只要使函数等于0就可以,解一元二次方程,得到结果.(2)函数恒成立问题,首先函数恒有两个相异的零点,得到函数的判别式大于0,对于b的值,不管b取什么,都能够使得不等式成立,注意再次使用函数的判别式.
【考点精析】解答此题的关键在于理解函数的零点的相关知识,掌握函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.
科目:高中数学 来源: 题型:
【题目】定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b﹣a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2﹣1)+(5﹣3)=3.用[x]表示不超过x的最大整数,记{x}=x﹣[x],其中x∈R.设f(x)=[x]{x},g(x)=x﹣1,当0≤x≤k时,不等式f(x)<g(x)解集区间的长度为5,则k的值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据给出的数塔猜测123456×9+7=( )
1×9+2=11
12×9+3=111
123×9+4=1111
1234×9+5=11111
12345×9+6=111111
……
A.1111110
B.1111111
C.1111112
D.1111113
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点(x1 , y1)在函数y=sin2x图象上,点(x2 , y2)在函数y=3的图象上,则(x1﹣x2)2+(y1﹣y2)2的最小值为( )
A.2
B.3
C.4
D.9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com