精英家教网 > 高中数学 > 题目详情

【题目】如图,圆轴相切于点,与轴正半轴交于两点的上方),且.

1)求圆的标准方程;

2)过点作任一条直线与圆相交于两点.

①求证:为定值,并求出这个定值;

②求的面积的最大值.

【答案】12)①;证明见解析②

【解析】

1)由直线与圆相交,利用勾股定理构建方程求得半径,得答案;

2)①分类讨论是否存在,当存在时,可联立直线与圆的方程,进而确定的关系,利用斜率k分别表示,,再利用弦长公式表示,作商并化简,得答案;当不存在时,M为特殊位置,直接表示,作商,得答案;

②利用点到直线的距离公式表示点B的距离,利用弦长公式表示,最后表示所求的面积,借助换元法求得函数的最大值即可.

1)由题可知点,所以可以设圆心

因为,所以由,解得,所以

所以圆的标准方程为

2证明:由(1)可得

存在时,设

将直线和圆的方程联立:

——Ⅰ

,且

那么

所以——Ⅱ

将其代入化简可得

不存在时,显然

此时

综上所述:为定值

由题可知此时必然存在,仍设

则点B的距离为:

可知式:

所以

,则

其内部函数开口向上,对称轴为

故当时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.

()写出y与x之间的函数关系式;

()从第几年开始,该机床开始盈利(盈利额为正值);

()使用若干年后,对机床的处理方案有两种:

(1)当年平均盈利额达到最大值时,以30万元价格处理该机床;

(2)当盈利额达到最大值时,以12万元价格处理该机床.

请你研究一下哪种方案处理较为合理?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

⑴当时,求函数的极值;

⑵若存在与函数的图象都相切的直线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)及其导数f′(x),若存在x0,使得f(x0)f′(x0),则称x0f(x)的一个“巧值点”,则下列函数中有“巧值点”的是________

f(x)x2f(x)exf(x)lnxf(x)tanx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的图象关于直线对称,它的最小正周期为π,则(   )

A. f(x)的图象过点(0,) B. f(x)上是减函数

C. f(x)的一个对称中心是 D. f(x)的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定下列四个命题,其中真命题是(

A.垂直于同一直线的两条直线相互平行

B.若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行

C.垂直于同一平面的两个平面相互平行

D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假并说明理由.

1)某个整数不是偶数,则这个数不能被4整除;

2)若,且,则,且

3)合数一定是偶数;

4)若,则

5)两个三角形两边一对角对应相等,则这两个三角形全等;

6)若实系数一元二次方程满足,那么这个方程有两个不相等的实根;

7)若集合满足,则

8)已知集合,如果,那么

查看答案和解析>>

同步练习册答案