【题目】给出下列命题:
①若等比数列{an}的公比为q,则“q>1”是“an+1>an(n∈N*)”的既不充分也不必要条件;
②“x≠1”是“x2≠1”的必要不充分条件;
③若函数y=lg(x2+ax+1)的值域为R,则实数a的取值范围是-2<a<2;
④“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.
其中真命题的个数是( )
A. 1 B. 2
C. 3 D. 4
【答案】B
【解析】①若首项为负,则公比q>1时,数列为递减数列,an+1<an(n∈N*),当an+1>an(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故①正确;
②“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故②正确;③函数y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故③错误;
④“a=1”时,“函数y=cos2x-sin2x=cos 2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=±1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故④错误.
故选B.
科目:高中数学 来源: 题型:
【题目】记集合A={x|x-a>0},B={y|y=sinx,x∈R},若0∈A∩B,则a的取值范围是( )
A. (-∞,0) B. (-∞,0]
C. [0,+∞) D. (0,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《论语·子路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足.”上述推理用的是( )
A.类比推理
B.归纳推理
C.演绎推理
D.一次三段论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂一月份的产值为15万元,第一季度的总产值是95万元,设月平均增长率为x , 则可列方程为( )
A.95=15(1+x)2
B.15(1+x)3=95
C.15(1+x)+15(1+x)2=95
D.15+15(1+x)+15(1+x)2=95
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】拟定从甲地到乙地通话m分钟的电话费由f(m)=0.6(0.5[m]+1)(元)决定,其中m>0,[m]是大于或等于m的最小整数,(如[3]=3,[3.8]=4,[3.1]=4,)则从甲地到乙到通话时间为5.5分钟的电话费为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )
A.1000名运动员是总体
B.每个运动员是个体
C.抽取的100名运动员是样本
D.样本容量是100
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com