精英家教网 > 高中数学 > 题目详情

【题目】如图在直三棱柱ABCA1B1C1AA1ABAC2,ABACM是棱BC的中点点P在线段A1B

(1)若P是线段A1B的中点,求直线MP与直线AC所成角的大小;

(2)若的中点,直线与平面所成角的正弦值为,求线段BP的长度.

【答案】(1) .

(2) .

【解析】

(1)为正交基建立如图所示的空间直角坐标系,利用向量法求得

直线MP与直线AC所成的角的大小为.(2)

利用向量法求得直线与平面所成角的正弦值,解得,即得线段BP的长度.

为正交基建立如图所示的空间直角坐标系,

(1)P是线段A1B的中点,

所以

,所以

所以直线MP与直线AC所成的角的大小为

(2),得

所以,所以所以

设平面的法向量

所以

因为,设直线与平面所成角为

所以所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将4名志愿者分别安排到火车站、轮渡码头、机场工作,要求每一个地方至少安排一名志愿者,其中甲、乙两名志愿者不安排在同一个地方工作,则不同的安排方法共有

A. 24种B. 30种C. 32种D. 36种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地ABCD建成生态休闲园,园区内有一景观湖EFG(图中阴影部分).以AB所在直线为x轴,AB的垂直平分线为y轴,建立平面直角坐标系xOy(如图所示).景观湖的边界曲线符合函数模型.园区服务中心P在x轴正半轴上,PO=百米.

(1)若在点O和景观湖边界曲线上一点M之间修建一条休闲长廊OM,求OM的最短长度;

(2)若在线段DE上设置一园区出口Q,试确定Q的位置,使通道直线段PQ最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)若对于任意,都有成立,求实数的取值范围;

(3)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若处取得极值,求的值;

(2)设,试讨论函数的单调性;

(3)当时,若存在正实数满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知)在区间上的最大值与最小值之和为,其中.

1)直接写出的解析式和单调性;

2)若恒成立,求实数的取值范围;

3)设,若,使得对,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是由个有序实数构成的一个数组,记作:.其中称为数组的“元”,的下标.如果数组中的每个“元”都来自数组中不同下标的“元”则称的子数组.定义两个数组的关系数为.

1)若,设的含有两个“元”的子数组,求的最大值及此时的数组

2)若,且的含有三个“元”的子数组,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力.某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:

每周移动支付次数

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合计

15

12

13

7

8

45

(1)把每周使用移动支付6次及6次以上的用户称为“移动支付达人”,按分层抽样的方法,在我市所有“移动支付达人”中,随机抽取6名用户

求抽取的6名用户中男女用户各多少人;

从这6名用户中抽取2人,求既有男“移动支付达人”又有女“移动支付达人”的概率.

(2)把每周使用移动支付超过3次的用户称为“移动支付活跃用户”,填写下表,问能否在犯错误概率不超过0.01的前提下,认为“移动支付活跃用户”与性别有关?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移动支付活跃用户

移动支付活跃用户

合计

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古代“五行”学认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有

A.5B.10

C.20D.120

查看答案和解析>>

同步练习册答案