精英家教网 > 高中数学 > 题目详情
14.在△ABC中,BC=3,CA=5,AB=7,则$\overrightarrow{AC}$•$\overrightarrow{CB}$的值为$\frac{15}{2}$.

分析 根据条件应用余弦定理即可求出$cosC=-\frac{1}{2}$,从而根据向量数量积的计算公式便可求出$\overrightarrow{AC}•\overrightarrow{CB}$的值.

解答 解:如图,
在△ABC中,由余弦定理得:
$cosC=\frac{C{A}^{2}+B{C}^{2}-A{B}^{2}}{2CA•BC}$=$\frac{25+9-49}{30}=-\frac{1}{2}$;
∴$\overrightarrow{AC}•\overrightarrow{CB}=|\overrightarrow{AC}||\overrightarrow{CB}|cos<\overrightarrow{AC},\overrightarrow{CB}>$
=$5×3×\frac{1}{2}$
=$\frac{15}{2}$.
故答案为:$\frac{15}{2}$.

点评 考查余弦定理,向量夹角的判断及概念,以及向量数量积的计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.x,y是实数,则$\sqrt{{{(x-y)}^2}+{{(\sqrt{1-{x^2}}-y+2)}^2}}$的最小值是(  )
A.$\sqrt{2}-1$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{2}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知a,b,c为正实数,给出以下结论:
①若a-2b+3c=0,则$\frac{{b}^{2}}{ac}$的最小值是3;
②若a+2b+2ab=8,则a+2b的最小值是4;
③若a(a+b+c)+bc=4,则2a+b+c的最小是2$\sqrt{2}$;
④若a2+b2+c2=4,则$\sqrt{5}$ab+$\sqrt{2}$bc的最大值是2$\sqrt{7}$.
其中正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知集合A={x|x2-x+1≥0},B={x|x2-5x+4≥0},则A∩B=(-∞,1]∪[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin2x-2$\sqrt{3}$sin2x,求f(x)的最小正周期及在区间[0,$\frac{2π}{3}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.到“北上广”创业是很多大学生的梦想,从某大学随机抽查了100人进行了问卷调查,得到了如下2×2列联表:
想到“北上广”创业不想到“北上广”创业合计
男性10
女性20
合计100
己知在这100人中随机抽取1人,抽到想到“北上广”创业的概率是$\frac{3}{5}$.
(1)请将上面的2×2列联表补充完整;
(2)能否在犯错误的概率不超过0.001的前提下,认为大学生想到“北上广”创业与性别有关?并说明你的理由;
(3)经进一步调查发现,在想到“北上广”创业的20名女大学生中,有5人想到“广州”创业.若从想到“北上广”创业的20名女大学生中任选3人,求在选出的3人中少有2人想到“广州”创业的概率.
下面的临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(參考公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在约束条件$\left\{{\begin{array}{l}{x+2y≤4}\\{x-y≤1}\\{x+2≥0}\end{array}}\right.$下,函数z=3x-y的最小值是-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.到点A(5,-1)和直线x+y-1=0距离相等的点的轨迹是(  )
A.椭圆B.双曲线C.抛物线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图所示的程序框图,若输出的y值为2,则输入的x值为(  )
A.-2B.4C.-2或4D.-2或4或1

查看答案和解析>>

同步练习册答案