【题目】某公司近年来科研费用支出万元与公司所获利润万元之间有如表的统计
数据:参考公式:用最小二乘法求出关于的线性回归方程为: ,
其中: , ,参考数值: 。
(Ⅰ)求出;
(Ⅱ)根据上表提供的数据可知公司所获利润万元与科研费用支出万元线性相关,请用最小二乘法求出关于的线性回归方程;
(Ⅲ)试根据(Ⅱ)求出的线性回归方程,预测该公司科研费用支出为10万元时公司所获得的利润。
【答案】(1)3.5,28(2)(3)64.4万元
【解析】试题分析:(1)利用平均值公式与所给参考数值求解即可;(2)利用公式求得,将样本中心点的坐标代入回归方程,求得,从而可得结果;(3)利用第二问的回归方程进行求值,预测即可
试题解析:(1)。
(2) ,
,
。
,
所以回归方程为。
(3)当时, (万元),
故预测该公司科研费用支出为10万元时公司所获得的利润为64.4万元。
【方法点晴】本题主要考查线性回归方程,属于难题.求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为; 回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.
科目:高中数学 来源: 题型:
【题目】设双曲线C的焦点在轴上,离心率为,其一个顶点的坐标是(0,1).
(Ⅰ)求双曲线C的标准方程;
(Ⅱ)若直线与该双曲线交于A、B两点,且A、B的中点为(2,3),求直线的方程
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是
A.AC⊥BE B.EF∥平面ABCD
C.三棱锥A-BEF的体积为定值 D.异面直线AE,BF所成的角为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“”是“对任意的正数, ”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】分析:根据基本不等式,我们可以判断出“”?“对任意的正数x,2x+≥1”与“对任意的正数x,2x+≥1”?“a=
”真假,进而根据充要条件的定义,即可得到结论.
解答:解:当“a=”时,由基本不等式可得:
“对任意的正数x,2x+≥1”一定成立,
即“a=”?“对任意的正数x,2x+≥1”为真命题;
而“对任意的正数x,2x+≥1的”时,可得“a≥”
即“对任意的正数x,2x+≥1”?“a=”为假命题;
故“a=”是“对任意的正数x,2x+≥1的”充分不必要条件
故选A
【题型】单选题
【结束】
9
【题目】如图是一几何体的平面展开图,其中为正方形, , 分别为, 的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面.
其中一定正确的选项是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某公园摩天轮的半径为,圆心距地面的高度为,摩天轮做匀速转动,每转一圈,摩天轮上的点的起始位置在最低点处.
(1)已知在时刻时距离地面的高度,(其中),求时距离地面的高度;
(2)当离地面以上时,可以看到公园的全貌,求转一圈中有多少时间可以看到公园的全貌?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:(1)异面直线是指空间两条既不平行也不相交的直线;(2)若直线上有两点到平面的距离相等,则;(3)若直线与平面内无穷多条直线都垂直,则;(4)两条异面直线中的一条垂直于平面,则另一条必定不垂直于平面.其中正确命题的个数是 ( )
A. 0个 B. 1个 C. 2个 D. 3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中, 面, 是平行四边形, , ,点为棱的中点,点在棱上,且,平面与交于点,则异面直线与所成角的正切值为__________.
【答案】
【解析】
延长交的延长线与点Q,连接QE交PA于点K,设QA=x,
由,得,则,所以.
取的中点为M,连接EM,则,
所以,则,所以AK=.
由AD//BC,得异面直线与所成角即为,
则异面直线与所成角的正切值为.
【题型】填空题
【结束】
17
【题目】在极坐标系中,极点为,已知曲线: 与曲线: 交于不同的两点, .
(1)求的值;
(2)求过点且与直线平行的直线的极坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com