精英家教网 > 高中数学 > 题目详情

过点且与直线垂直的直线方程为               .

 

【答案】

【解析】

试题分析:根据题意,由于过点且与直线垂直的直线的斜率为2,则由点斜式方程可知为,故答案为.

考点:直线方程

点评:主要是考查了直线方程的求解,属于基础题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①有两个侧面是矩形的四棱柱是直四棱柱;
②若f(x)是单调函数,则f(x)与它的反函数f -1(x)具有相同的单调性;
③若两平面垂直相交于直线m,则过一个平面内一点垂直于m的直线就垂直于另一平面;
④在120°的二面角内放一个半径为6的球,使它与两个半平面各有且仅有一个公共点,则球心到这个二面角的棱的距离是2
3
.其中,不正确命题的序号为

查看答案和解析>>

科目:高中数学 来源:2012届重庆市“名校联盟”高二第一次联考文科数学试卷(解析版) 题型:解答题

已知两条直线的交点为P,直

线的方程为:.

(1)求过点P且与平行的直线方程;

(2)求过点P且与垂直的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三5月模拟考试理科数学试卷(解析版) 题型:解答题

已知椭圆的离心率为,直线:与以原点为圆心、以椭圆的短半轴长为半径的圆相切.

(1)求椭圆的方程;

(2)设椭圆的左焦点为,右焦点,直线过点且垂直于椭圆的长轴,动直线

于点,线段垂直平分线交于点,求点的轨迹的方程;

(3)当P不在轴上时,在曲线上是否存在两个不同点C、D关于对称,若存在,

求出的斜率范围,若不存在,说明理由。

 

查看答案和解析>>

科目:高中数学 来源:河北省高三下学期第二次考试数学(文) 题型:解答题

(本题满分12分)已知椭圆的离心率为

直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直

线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积

的最小值.

 

查看答案和解析>>

科目:高中数学 来源:河北省高三下学期第二次考试数学(文) 题型:解答题

(本题满分12分)已知椭圆的离心率为

直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直

线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程;

(Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积

的最小值.

 

查看答案和解析>>

同步练习册答案