精英家教网 > 高中数学 > 题目详情

如图,四棱锥S﹣ABCD的底面为正方形,SD⊥平面ABCD,SD=AD=2,请建立空间直角坐标系解决下列问题.

(1)求证:;(2)求直线与平面所成角的正弦值.

(1)详见解析;(2)

解析试题分析:(1) 建立以为坐标原点,所在的直线分别为轴的空间直角坐标系,写出的坐标,计算其数量积即可证明垂直;(2)取平面的法向量,利用向量的数量积,计算向量的夹角,转化为线面角.
试题解析:(1)建立以为坐标原点,所在的直线分别为轴的空间直角坐标系,
,,,
,


(2)取平面ADS的一个法向量为,则

所以直线与平面所成角的正弦值为
考点:本题主要考查了空间向量在立体几何中的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面,且底面为正方形,分别为的中点.

(1)求证:平面;
(2)求平面和平面的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCDABDCABADADCD=1,AA1AB=2,E为棱AA1的中点.
 
(1)证明B1C1CE
(2)求二面角B1-CE-C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是直角梯形,,且,顶点在底面内的射影恰好落在的中点上.

(1)求证:
(2)若,求直线所成角的 余弦值;
(3)若平面与平面所成的二面角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为矩形,PD⊥平面ABCDPDQAQAADPD.

(1)求证:平面PQC⊥平面DCQ
(2)若二面角Q-BP-C的余弦值为-,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2.

(Ⅰ)求异面直线EF与BC所成角的大小;
(Ⅱ)若二面角A-BF-D的平面角的余弦值为,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正三棱柱的所有棱长都为4,D为的中点.

(1)求证:⊥平面
(2)求二面角余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面是等腰直角三角形,,四边形是直角梯形,,点分别为的中点.

(1)求证:平面
(2)求直线和平面所成角的正弦值;
(3)能否在上找到一点,使得平面?若能,请指出点的位置,并加以证明;若不能,请说明理由 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量并确定的关系,使轴垂直.

查看答案和解析>>

同步练习册答案