精英家教网 > 高中数学 > 题目详情

已知双曲线中心在原点,焦点F1、F2在坐标轴上.离心率e=数学公式,且过点(4,6),求双曲线的方程.

解:由e==得a2+b2=2a2
∴a2=b2
故双曲线为等轴双曲线,故可设双曲线方程为:x2-y2=λ,
将点(4,6)代入,得16-36=λ,即λ=-20,
∴双曲线方程为-=1.
分析:由双曲线的离心率为,可知双曲线为等轴双曲线,设出其方程,利用待定系数法即可求得参数的值,从而可得答案.
点评:本题考查双曲线的标准方程,考查待定系数法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线中心在原点且一个焦点为F(
7
,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为-
2
3
,则此双曲线的方程是(  )
A、
x2
3
-
y2
4
=1
B、
x2
4
-
y2
3
=1
C、
x2
5
-
y2
2
=1
D、
x2
2
-
y2
5
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线中心在原点,焦点在x轴上,实轴长为2.一条斜率为1的直线经过双曲线的右焦点与双曲线相交于A、B两点,以AB为直径的圆与双曲线的右准线相交于M、N.
(1)若双曲线的离心率2,求圆的半径;
(2)设AB中点为H,若
HM
HN
=-
16
3
,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线中心在原点且一个焦点为F1(-
5
 0)
,点P位于该双曲线上,线段PF1的中点坐标为(0,2),则双曲线的方程为(  )
A、
x2
4
-y2=1
B、x2-
y2
4
=1
C、
x2
2
-
y2
3
=1
D、
x2
3
-
y2
2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线中心在原点且一个焦点为F(
7
,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为-
2
3
,则此双曲线的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线中心在原点,一个焦点为F1(-
5
,0)
,点P在双曲线上,且线段PF1的中点坐标为(0,2),则此双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案