精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形ABCD为正方形,平面ABCD

1)求证:平面PAD

2)在棱AB上是否存在一点F,使得平面平面PCE?如果存在,求的值;如果不存在,说明理由.

【答案】(1)证明见解析(2)存在,

【解析】

1)根据已知条件便可证明平面BCE∥平面PAD,从而便得到CE∥平面PAD
2)首先分别以ABADAP三直线为xyz轴,建立空间直角坐标系,要使平面DEF⊥平面PCE,则有这两平面的法向量垂直,设,平面PCE的法向量为,根据即可求出,同样的办法表示出平面DEF的法向量,根据即可求出,从而求出的值.

解:(1)设PA中点为G,连结EGDG

因为,且,所以

所以四边形BEGA为平行四边形,所以,且

因为正方形ABCD,所以

所以,且

所以四边形CDGE为平行四边形,所以

因为平面PAD平面PAD,所以平面PAD

(2)如图,建立空间坐标系,则

所以

设平面PCE的一个法向量为

所以

,则,所以

假设存在点满足题意,则

设平面DEF的一个法向量为

,则,所以

因为平面平面PCE,所以,即

所以,故存在点满足题意,且

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数,当时,恒成立,则的最大值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆ab0)长轴的两顶点为AB,左右焦点分别为F1F2,焦距为2ca=2c,过F1且垂直于x轴的直线被椭圆C截得的线段长为3

1)求椭圆C的方程;

2)在双曲线 上取点Q(异于顶点),直线OQ与椭圆C交于点P,若直线APBPAQBQ的斜率分别为k1k2k3k4,试证明:k1+k2+k3+k4为定值;

3)在椭圆C外的抛物线Ky2=4x上取一点E,若EF1EF2的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司进行共享单车的投放与损耗统计,到去年年底单车的市场保有量(已投入市场且能正常使用的单车数量)为辆,预计今后每年新增单车1000辆,随着单车的频繁使用,估计每年将有200辆车的损耗,并且今后若干年内,年平均损耗在上一年损耗基础上增加.

1)预计年底单车的市场保有量是多少?

2)到哪一年底,市场的单车保有量达到最多?该年的单车保有量是多少辆(最后结果精确到整数)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).

文学类专栏

科普类专栏

其他类专栏

文学类图书

100

40

10

科普类图书

30

200

30

其他图书

20

10

60

1)根据统计数据估计文学类图书分类正确的概率;

2)根据统计数据估计图书分类错误的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.

1)若,证明:函数必有局部对称点;

2)若函数在区间内有局部对称点,求实数的取值范围;

3)若函数上有局部对称点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处的切线方程为

1)求的值;

2)设,若对任意的,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCDPD∥QAQA=AB=PD.

I)证明:平面PQC⊥平面DCQ

II)求二面角Q-BP-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出四个函数:①;②;③;④,从其中任选个,则事件:“所选个函数图象有且仅有个公共点”的概率是________.

查看答案和解析>>

同步练习册答案