精英家教网 > 高中数学 > 题目详情

平面内给定三个向量:a=(3,2),b=(-1,2),c=(4,1).

(1)求3ab-2c

(2)求满足a=mb+nc的实数m和n;

(3)若(a+kc)∥(2ba),求实数k;

(4)设d=(x,y)满足(dc)∥(ab)且|dc|=1,求d

答案:
解析:

  解:(1)3ab-2c=3(3,2)+(-1,2)-2(4,1)=(9,6)+(-1,2)-(8,2)=(9-1-8,6+2-2)=(0,6).

  (2)∵a=mb+nc,m、n∈R

  ∴(3,2)=m(-1,2)+n(4,1)=(-m+4n,2m+n).

  ∴

  解得

  (3)∵(a+kc)∥(2ba)且a+kc=(3+4k,2+k)2ba=(-5,2),

  ∴(3+4k)×2-(-5)×(2+k)=0.

  ∴k=

  (4)∵dc=(x-4,y-1),ab=(2,4),且(dc)∥(ab)且|dc|=1,

  ∴

  解得

  ∴d=()或d=().


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)
(
a
+k
c
)
(2
a
-
b
)
,则实数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).回答下列问题:
(1)若(
a
+k
c
)∥(2
b
-
a
),求实数k;
(2)设
d
=(x,y)满足(
d
-
c
)∥(
a
+
b
)且|
d
-
c
|=1,求
d

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2)
b
=(-1,2)
c
=(4,1)

(1)求3
a
+
b
-2
c

(2)求满足
a
=m
b
+n
c
的实数m、n.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(1)求向量3
a
+
b
-2
c
的坐标;
(2)若(
a
+k
c
)∥(2
b
-
a
),求实数k的值;
(3)设
d
=(t,0),且(
a
+
b
)⊥(
d
-
c
),求
d

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内给定三个向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)

(1)求|3
a
+
b
-2
c
|
的值;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求实数k的值.

查看答案和解析>>

同步练习册答案