【题目】已知函数f(x)=2lnx﹣ax2+3,若存在实数m、n∈[1,5]满足n﹣m≥2时,f(m)=f(n)成立,则实数a的最大值为( )
A.
B.
C.
D.
【答案】B
【解析】解:由f(m)=f(n)2lnn﹣an2+3=2lnm﹣am2+3,∴a= .
令n=m+t,(t≥1),则a= ,(m∈[1,5],t≥2)
显然g(m)═ ,在m∈[1,+∞)单调递减,∴a≤g(1)= ,(t≥1)
令h(t)=g(1)= ,(t≥2),h′(t)=
∵t≥2,∴2ln(t+1)>1,则t2+2t﹣2ln(t+1)(t+1)2<0,
∴令h(t)=g(1)= ,(t≥2),单调递减,
∴
∴实数a的最大值为 .
故选:B
【考点精析】通过灵活运用函数的极值与导数,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值即可以解答此题.
科目:高中数学 来源: 题型:
【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功.某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1所有的棱长均为2,A1B= ,A1B⊥AC.
(Ⅰ)求证:A1C1⊥B1C;
(Ⅱ)求直线AC和平面ABB1A1所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,过点P(1,0)的直线l的参数方程是 (t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C点的极坐标方程为ρ=﹣4sin(θ﹣ ).
(1)判断直线l与曲线C的位置关系;
(2)若直线l与曲线C交于两点A、B,求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点E(﹣2,0),点P时圆F:(x﹣2)2+y2=36上任意一点,线段EP的垂直平分线交FP于点M,点M的轨迹记为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过F的直线交曲线C于不同的A、B两点,交y轴于点N,已知 =m , =n ,求m+n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin(ωx+φ)(ω>0,﹣ <φ< ),A( ,0)为f(x)图象的对称中心,B,C是该图象上相邻的最高点和最低点,若BC=4,则f(x)的单调递增区间是( )
A.(2k﹣ ,2k+ ),k∈Z
B.(2kπ﹣ π,2kπ+ π),k∈Z
C.(4k﹣ ,4k+ ),k∈Z
D.(4kπ﹣ π,4kπ+ π),k∈Z
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a2=2,其前n项和Sn满足: (n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若 ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为 .
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列,数学期望以及方差;大气污染会引起各种疾病,试浅谈日常生活中如何减少大气污染.
下面的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式K2= 其中n=a+b+c+d)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com