【题目】已知函数,,其中.
(1)求函数在的值域;
(2)用表示实数,的最大值,记函数,讨论函数的零点个数.
【答案】(1);(2)见解析.
【解析】
(1)求导得到,讨论和得到函数在单调递增,计算得到答案.
(2)时,恒成立,当时,恒成立,故的零点即为函数的零点,讨论在的零点个数得到答案.
(1)
当时,,,所以
当时,,,所以
所以:当时,成立,即函数在单调递增
所以函数在的值域为,即值域为.
(2)函数的定义域为
由(1)得,函数在单调递增,
当时,,又,
所以时,恒成立,即时,无零点.
当时,恒成立,所以的零点即为函数的零点
下面讨论函数在的零点个数
,所以
Ⅰ、当时,因为,
又函数在区间递减,所以
即当时,,
所以单调递减,由得:当时,递增
当时,递减
当时,,当时
又,
当时,函数有1个零点;
当时,函数有2个零点;
当时,函数有3个零点;
Ⅱ、当时,,由Ⅰ得:当时,,递增,
当时,,递减,所以,,
所以当时函数有2个零点
Ⅲ、当时,
,,即成立,由,
所以当时函数有1个零点
综上所述:当或时,函数有1个零点;
当或时,函数有2个零点;
当时,函数有3个零点.
科目:高中数学 来源: 题型:
【题目】某地拟建造一座体育馆,其设计方案侧面的外轮廓线如图所示:曲线是以点为圆心的圆的一部分,其中,是圆的切线,且,曲线是抛物线的一部分,,且恰好等于圆的半径.
(1)若米,米,求与的值;
(2)若体育馆侧面的最大宽度不超过75米,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线平面,四边形是正方形,且,点,,分别是线段,,的中点.
(1)求异面直线与所成角的大小(结果用反三角表示);
(2)在线段上是否存在一点,使,若存在,求出的长,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若
(1)当时,设所对应的自变量取值区间的长度为(闭区间的长度为),试求的最大值;
(2)是否存在这样的使得当时,?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图为函数的部分图象,、是它与轴的两个交点,、分别为它的最高点和最低点,是线段的中点,且为等腰直角三角形.
(1)求的解析式;
(2)将函数图象上的每个点的横坐标缩短为原来的一半,再向左平移个单位长度得到的图象,求的解析式及单调增区间,对称中心.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面ABCD为菱形,且∠ABC=60°,平面ABCD,,点E,F为PC,PA的中点.
(1)求证:平面BDE⊥平面ABCD;
(2)二面角E—BD—F的大小;
(3)设点M在PB(端点除外)上,试判断CM与平面BDF是否平行,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别为的三内角A,B,C的对边,其面积,在等差数列中,,公差.数列的前n项和为,且.
(1)求数列的通项公式;
(2)若,求数列的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(Ⅰ)求曲线的直角坐标方程,并指出其表示何种曲线;(Ⅱ)设直线与曲线交于两点,若点的直角坐标为,试求当时,的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com