精英家教网 > 高中数学 > 题目详情
.已知函数
(Ⅰ)当时,求的值域
(Ⅱ)设,若恒成立,求实数a的取值范围
(III)设,若上的所有极值点按从小到大排成一列
求证:
(Ⅰ)函数的值域为 ;(Ⅱ)的取值范围为 .(Ⅲ).
本试题主要是考查了导数在研究函数中的 运用。利用导数求解函数的单调区间,确定值域和运用不等式恒成立问题,得到参数的取值范围以及不等式的证明。
(1)因为上单调递增.
,从而得到值域。
(2)因为设,若恒成立,可以构造函数,记,则.
利用导数的思想确定最值得到参数的范围。
(3)根据
,则.
那么可知借助于正切函数的单调区间得到结论。
解:(Ⅰ) 上单调递增.

所以函数的值域为                  ……………………. 4分
(Ⅱ),记,则.
时,,所以上单调递增.
,故.从而上单调递增.
所以,即上恒成立………….7分
时,.
所以上单调递减,从而
上单调递减,这与已知矛盾. …………….9分
综上,故的取值范围为 .
(Ⅲ)
,则.

依题意可知
从而.  …………………….12分
,所以.    …………….14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数.
(1)求函数的单调区间;
(2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)求证:当时,有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
(理)(1)证明不等式:
(2)已知函数上单调递增,求实数的取值范围.
(3)若关于x的不等式上恒成立,求实数的最大值.
(文)已知函数的导函数的图象关于直线x=2对称.
(Ⅰ)求b的值;
(Ⅱ)若处取得极小值,记此极小值为,求的定义域和值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.
(Ⅰ)令,讨论内的单调性并求极值;
(Ⅱ)当时,试判断的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数.
(1)求在[0,1]上的极值;
(2)若对任意,不等式成立,求实数的取值范围;
(3)若关于的方程在[0,1]上恰有两个不同的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

、函数的单调递增区间为_______________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当  时,求函数  的最小值;
(2)当  时,讨论函数  的单调性;
(3)是否存在实数,对任意的 ,且,有,恒成立,若存在求出的取值范围,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极小值
(1)求m的值。
(2)若上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知是函数的一个极值点.
(Ⅰ)求
(Ⅱ)求函数的单调区间;
(Ⅲ)若直线与函数的图象有3个交点,求的取值范围.

查看答案和解析>>

同步练习册答案