精英家教网 > 高中数学 > 题目详情
若抛物线的焦点与双曲线的右焦点重合,则双曲线的离心率为      

试题分析:∵,∴抛物线y2=8x的焦点坐标为(2,0),∵抛物线y2=8x的焦点与双曲线的右焦点重合,∴m+1=4,∴m=3,∴e=,故答案为
点评:此类问题比较综合,考查抛物线与双曲线的几何性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左顶点,过右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆与抛物线的焦点均在轴上,的中心及的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:










(Ⅰ)求曲线的标准方程;
(Ⅱ)设直线过抛物线的焦点与椭圆交于不同的两点,当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左、右焦点分别为为椭圆上异于长轴端点的一点,,△的内心为I,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为 且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线的距离。(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的终边经过点A,且点A在抛物线的准线上,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若双曲线)的一条渐近线被圆截得的弦长为,则双曲线的离心率为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点坐标是(   )
A.B.(1,0)C.D.(0,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点, 是一个动点, 且直线的斜率之积为.
(1) 求动点的轨迹的方程;
(2) 设, 过点的直线两点, 若对满足条件的任意直线, 不等式恒成立, 求的最小值.

查看答案和解析>>

同步练习册答案