精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3a2x+1
(1)若a=1,求函数f(x)的单调区间;
(2)已知a>0,若?x∈[1,2],f(x)≥0恒成立,求实数a的取值范围.
分析:(1)将a=1代入,求出函数的解析式,进而求出导函数的解析式,分析导函数的符号后,可得函数f(x)的单调区间;
(2)若?x∈[1,2],f(x)≥0恒成立,求实数a的取值范围.则?x∈[1,2],恒有3a2
x3+1
x
,构造函数h(x)=
x3+1
x
,利用导数法求出其最小值,可得实数a的取值范围.
解答:解:(1)当a=1时,f(x)=x3-3x+1
f'(x)=3x2-3
由f'(x)>0得x<-1或x>1,
由f'(x)<0得-1<x<1
故f(x)的单调递增区间是(-∞,-1)和(1,+∞),单调递减区间是(-1,1)
(2)由题?x∈[1,2],恒有x3-3a2x+1≥0⇒?x∈[1,2],恒有3a2
x3+1
x

h(x)=
x3+1
x
=x2+
1
x
,h′(x)=2x-
1
x2
=
2(x3-
1
2
)
x2

当x∈[1,2]时,h'(x)>0
∴h(x)在[1,2]上单调递增,
∴h(x)min=h(1)=2
故3a2≤2
又a>0
0<a≤
6
3
点评:本题考查的知识点是利用导数求闭区间上函数的最值,利用导数研究函数的单调性,熟练掌握导函数法求函数单调区间和最值的方法和步骤是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案