精英家教网 > 高中数学 > 题目详情

【题目】小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为;小李后掷一枚骰子,向上的点数记为.

(1)求能被 整除的概率.

(2)规定:若,则小王赢;若,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.

【答案】(1) ;(2)见解析.

【解析】试题分析:(1)由于取值为123456,列举出为坐标的点和能被3整除的点,由此能求出能被3整除的概率;(2)列举出满足的点和满足的点,从而求出小王赢的概率等于小李赢的概率,所以这个游戏规则公平.

试题解析:(1)由于取值为1,2,3,4,5,6,则以为坐标的点有:

,共有 个,即以为坐标的点共有 个.

能被 整除的点是 个,所以能被 整除的概率是

(2)满足的点有: 个,所以小王赢的概率是

满足的点有:个,所以小李赢的概率是

则小王赢的概率等于小李赢的概率,所以这个游戏规则公平.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 侧面为等边三角形,

(1)证明:

(2)求二面角的平面角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,曲线的参数方程为

1写出直线及曲线的直角坐标方程;

2过点平行于直线的直线与曲线交于两点,若,求点轨迹的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,四边形为矩形,为等腰三角形,,平面平面,且,,分别为的中点.

1)证明:平面

2)证明:平面平面

3)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABCA1B1C1中,ABAA1CAB.

(1)证明:CB1⊥BA1

(2)已知AB2BC,求三棱锥C1ABA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点处下上至处有两种路径一种是从沿直线步行到另一种是先从沿索道乘缆车到然后从沿直线步行到.现有甲、乙两位游客从处下山甲沿匀速步行,速度为.在甲出发乙从乘缆车到处停留再从匀速步行到假设缆车匀速直线运动的速度为山路长为1260经测量

1求索道的长

2问:乙出发多少,乙在缆车上与甲的距离最短?

3为使两位游客在处互相等待的时间不超过乙步行的速度应控制在什么范围内

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(),一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费,为了了解居民用水情况,通过抽祥,获得了某年位居民毎人的月均用水量(单位:吨),将数据按照分成组,制成了如图所示的频率分布直方图.

(1)求直方图中的值;

(2)若该市有万居民,估计全市居民中月均用水量不低于吨的人数,并说明理由;

(3)若该市政府希望使的居民每月的用水量不超过标准(),估计的值(精确到),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,抛物线上横坐标为的点到抛物线顶点的距离与该点到抛物线准线的距离相等。

(1)求抛物线的方程;

(2)设直线与抛物线交于两点,若,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,两条公路AP与AQ夹角A为钝角,其正弦值是 .甲乙两人从A点出发沿着两条公路进行搜救工作,甲沿着公路AP方向,乙沿着公路AQ方向.

(1)当甲前进5km的时候到达P处,同时乙到达Q处,通讯测得甲乙两人相距 km,求乙在此时前进的距离AQ;

(2)甲在5公里处原地未动,乙回头往A方向行走至M点收到甲发出的信号,此时M点看P、Q两点的张角为(张角为QMP),求甲乙两人相距的距离MP的长.

查看答案和解析>>

同步练习册答案