精英家教网 > 高中数学 > 题目详情
若函数f(x)=
1
3
x3+ax2-2x在(a,+∞)是单调的,则实数a的取值范围是
 
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:先求出函数的导数,根据函数的单调性得到不等式,解出即可.
解答: 解:∵f′(x)=x2+2ax-2,
∴函数f′(x)的对称轴是:x=-a,开口向上,
由f(x)在(a,+∞)是单调,
∴a2+2a2-2≥0,(a>0)解得:a≥
6
3

故答案为:[
6
3
,+∞)
点评:本题考查了函数的单调性,二次函数的性质,考查了导数的应用,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={3k+2|0≤k≤667,k∈Z}.若在A中任取n个数,都能从中找出两个不同的数a,b,使a+b=2104,则n的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-lnx.
(1)求函数的单调区间与最值;
(2)若方程f(x)-k=0在区间[
1
e
,e]内有两个不相等的实根,求实数a的取值范围;
(3)当a=1时,函数g(x)=1-
f(x)
x2
,求证:
ln2
24
+
ln3
34
+…+
lnn
n4
1
2e
.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,圆C的方程为x2+y2=-2y+3,直线l过点(1,0)且与直线x-y+1=0垂直.若直线l与圆C交于A、B两点,则△OAB的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-2x(e为自然对数的底数)
(1)求函数f(x)的单调区间
(2)若存在x∈[
1
2
,2]
使不等式f(x)<mx成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD的边长为2,点E、F分别在边AB、BC上,且AE=1,BF=
1
2
,将此正方形沿DE、DF折起,使点A、C重合于点P,则三棱锥P-DEF的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

当a∈[-1,1]时,f(x)=alg2x+4>0恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的顶点A固定,点A的对边BC的长是2a,边BC上的高为b,边BC沿一条定直线移动,求△ABC外心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=logn+1(n+2)(n∈N+),把使得乘积a1•a2•a3…an的整数的数n叫做“穿越数”,并把这些“穿越数”由小到大排序构成的数列记为{bn}(m∈N+
(1)求区间(1,2015)内的所有“穿越数”的和;
(2)证明:
1
b1
+
1
b2
+…+
1
bn
5
6

查看答案和解析>>

同步练习册答案