精英家教网 > 高中数学 > 题目详情

若三个点P(1,1),A(2,-4),B(x,-9)共线,则x=(      )

A.-1       B.3          C.            D.51

 

【答案】

B

【解析】

试题分析:三点共线问题一般可由斜率相等列出方程求参数的值,由,∴

考点:三点共线问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下三个命题:
(A)已知P(m,4)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的一点,F1、F2是左、右两个焦点,若△PF1F2的内切圆的半径为
3
2
,则此椭圆的离心率e=
4
5

(B)过椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上的任意一动点M,引圆O:x2+y2=b2的两条切线MA、MB,切点分别为A、B,若∠BMA=
π
2
,则椭圆的离心率e的取值范围为[
3
2
,1)

(C)已知F1(-2,0)、F2(2,0),P是直线x=-1上一动点,则以F1、F2为焦点且过点P的双曲线的离心率e的取值范围是[2,+∞).
其中真命题的代号是
 
(写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的左、右焦点分别是F1、F2,离心率为
3
2
,过F1且垂直于x轴的直线被椭圆C截得的线段长为1;
(Ⅰ)求椭圆C的方程.
(Ⅱ)若A,B,C是椭圆上的三个点,O是坐标原点,当点B是椭圆C的右顶点,且四边形OABC为菱形时,求此菱形的面积.
(Ⅲ)设点p是椭圆C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交椭圆C的长轴于点M(m,0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015届广东汕头金山中学高二上学期期中理科数学试卷(解析版) 题型:选择题

若三个点P(1,1),A(2,-4),B(x,-9)共线,则x=(      )

A.-1       B. 3          C.             D. 51

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高考模拟预测数学文试卷(解析版) 题型:解答题

一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.

(I)从袋中随机抽取一个球,将其编号记为,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为.求关于的一元二次方程有实根的概率;

(II)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n.若以 作为点P的坐标,求点P落在区域内的概率.

【解析】第一问利用古典概型概率求解所有的基本事件数共12种,然后利用方程有实根,则满足△=4a2-4b2≥0,即a2≥b2。,这样求得事件发生的基本事件数为6种,从而得到概率。第二问中,利用所有的基本事件数为16种。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。在求解满足的基本事件数为(1,1) (2,1)  (2,2) (3,1) 共4种,结合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12种。

有实根, ∴△=4a2-4b2≥0,即a2≥b2

记“有实根”为事件A,则A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6种。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16种。

记“点P落在区域内”为事件B,则B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4种。∴PB.=

 

查看答案和解析>>

同步练习册答案