精英家教网 > 高中数学 > 题目详情
已知圆M:(x+
5
)2+y2=36
,定点N(
5
,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0

(1)求点G的轨迹C的方程;
(2)过点(2,0)作斜率为k的直线l,与曲线C交于A,B两点,O是坐标原点,是否存在这样的直线l,使得
OA
OB
≤-1?若存在,求出直线l的斜率k的取值范围;若不存在,请说明理由.
分析:(1)点Q在NP上,点G在MP上,由已知有|GN|+|GM|=|MP|=6,由椭圆的定义知G点的轨迹是以M、N为焦点的椭圆,由定义写出其标准方程即可得到点G的轨迹C的方程.
(2)令A(x1,y1),B(x2,y2),则有x1x2+y1y2<-1,由直线l与曲线C联立求利用根与系数的关系求出x1x2,y1y2的参数表达式,代入求直线的斜率k的范围.
解答:解:由已知,Q为PN的中点且GQ⊥PN⇒GQ为PN的中垂线⇒|PG|=|GN|
∴|GN|+|GM|=|MP|=6,故G点的轨迹是以M、N为焦点的椭圆,其长半轴长a=3,半焦距c=
5

∴短半轴长b=2,∴点G的轨迹方程是
x2
9
+
y2
4
=1
(II)设l的方程为y=k(x-2),A(x1,y1),B(x2,y2
y=k(x-2)
x2
9
+
y2
4
=1
⇒(9k2+4)x2-36k2x+36(k2-1)=0
∴x1+x2=
36k2
9k2+4

x1x2=
36(k2-1)
9k2+4

y1y2=[k(x1-2)][k(x2-2)]=k2[x1x2-2(x1+x2)+4]=
20k2
9k2+4

OA
OB
≤-1,即x1x2+y1y2<-1
把①、②代入上式x1x2+y1y2=0得-
4
130
65
<k<
4
130
65
点评:本题的考点是轨迹方程,考查了定义法求椭圆的轨迹方程与直线与椭圆的相交问题,直线与椭圆的关系问题是圆锥曲线中一类常考的综合题,其规律是联立方程⇒消元得关于x,或y的一元二次方程,再利用根系关系得到两个直线的交点的坐标满足的方程,学习时应注意总结这一共性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:(x+
5
)2+y2=36
,定点N(
5
,0)
,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0

(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•湖北模拟)已知圆M的圆心M在x轴上,半径为1,直线l:y=
4
3
x-
1
2
,被圆M所截的弦长为
3
,且圆心M在直线l的下方.
(I)求圆M的方程;
(II)设A(0,t),B(0,t+6)(-5≤t≤-2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+(y-2)2=1,设点B,C是直线l:x-2y=0上的两点,它们的横坐标分别是t,t+4(t∈R),P点的纵坐标为a且点P在线段BC上,过P点作圆M的切线PA,切点为A
(1)若t=0,MP=
5
,求直线PA的方程;
(2)经过A,P,M三点的圆的圆心是D,
①将DO2表示成a的函数f(a),并写出定义域.
②求线段DO长的最小值.

查看答案和解析>>

科目:高中数学 来源:广西一模 题型:解答题

已知圆M:(x+
5
)2+y2=36
,定点N(
5
,0)
,点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
NP
=2
NQ
GQ
NP
=0

(I)求点G的轨迹C的方程;
(II)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设
OS
=
OA
+
OB
,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案