(本小题满分12分)如图,在点上,过点做//将的位置(),
使得.
(I)求证: (II)试问:当点上移动时,二面角的平面角的余弦值是否为定值?若是,求出定值,若不是,说明理由.
(1)见解析;(2)当点E在线段AB上移动时,二面角的平面角的余弦值为定值.
【解析】
试题分析:(1)在中,
又平面PEB.
又平面PEB,
(2)在平面PEB内,经P点作PDBE于D,由(1)知EF面PEB,
EFPD.PD面BCEF.在面PEB内过点B作直线BH//PD,则BH面BCFE.以B点为坐标原点,的方向分别为x轴,y轴,z轴的正方向建立空间直角坐标系.
设PE=x(0<x<4)又
在中,
从而
设是平面PCF的一个法向量,由
得取得
是平面PFC的一个法向量 又平面BCF的一个法向量为
设二面角的平面角为,则
因此当点E在线段AB上移动时,二面角的平面角的余弦值为定值.
考点:本题主要考查立体几何中的基本问题,空间向量的应用。
点评:本题通过考查直线与直线,直线与平面、平面与平面的位置关系等基础知识,考查空间想像能力、推理论证能力、运算求解能力、考查化归与转化思想,函数与方程思想等.属中档题。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com