精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,过点P(n,Sn)和Q(n+1,Sn+1) (n∈N*)的直线的斜率为3n-2,则a2+a4+a5+a9的值等于(  )
A、52B、40C、26D、20
考点:数列的求和
专题:等差数列与等比数列
分析:首先根据题中的已知条件已知数列{an}的前n项和为Sn,过点P(n,Sn)和Q(n+1,Sn+1) (n∈N*)的直线的斜率为3n-2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.
解答: 解:已知数列{an}的前n项和为Sn,过点P(n,Sn)和Q(n+1,Sn+1) (n∈N*)的直线的斜率为3n-2
则:
Sn+1-Sn
(n+1)-n
=an+1=3n-2

∴an=3n-5
a2+a4+a5+a9=40
故选:B
点评:本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若A,B,C为△ABC的三个内角,则
1
A+B
+
4
C
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有一片树林现有木材储蓄量为7100cm3,要力争使木材储蓄量20年后翻两番,即达到28400cm3
(1)求平均每年木材储蓄量的增长率.
(2)如果平均每年增长率为8%,几年可以翻两番?

查看答案和解析>>

科目:高中数学 来源: 题型:

类比边长为2a的正三角形内的一点到三边的距离之和为
3
a,对于棱长为6a的正四面体,正确的结论是(  )
A、正四面体内部的一点到六条棱的距离的和为2
3
a
B、正四面体内部的一点到四面的距离的和为2
6
a
C、正四面体的中心到四面的距离的和为2
6
a
D、正四面体的中心到六条棱的距离的和为9
2
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
2-i
1-i
,其中i是虚数单位,则|z|=(  )
A、
10
2
B、
5
2
C、
5
2
D、
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若a<0、b>0,则下列不等式中正确的是(  )
A、|a|>|b|
B、a2<b2
C、
-a
b
D、
1
a
1
b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=-x3+x2-2ax在[-1,2]上是增函数,则a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

方程x2-2x+5=0的一个根是1-2i,则另一个根为(  )
A、1+2iB、-1+2i
C、2+iD、2-i

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2(x≤-1)
x2(x>0)

(1)求f(-4)、f(f(-1))的值;
(2)若f(a)=
1
4
,求a的值.

查看答案和解析>>

同步练习册答案