精英家教网 > 高中数学 > 题目详情

如图,矩形中,上的点,且,AC、BD交于点G.

(1)求证:
(2)求证;
(3)求三棱锥的体积.

(1)利用线线垂直证明线面垂直;(2)利用线线平行证明线面平行;(3).

解析试题分析:(1)证明:

 AE平面ABE,   ∴  2分
,∴   3分
又∵BC∩BF=B,
   ..4分
(2)证明:依题意可知:中点.

,而
中点,
∴ 在中,,    6分
又∵FG平面BFD,AE平面BFD,
     8分
(3)解:, ∴,而
,即   .9分
中点,中点, ∴.
又知在中,
     11分
.     .12分
考点:本题考查了空间中的线面关系
点评:在求几何体的体积时,当所给的几何体为“规则”的柱体、椎体或台体时,直接利用公式求解.当所给几何体的体积不能直接运用公式求解时,常利用转换法、分割法、补形法等方法

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图1,在等腰直角三角形中,,,分别是上的点,,
的中点.将沿折起,得到如图2所示的四棱锥,其中.

(Ⅰ) 证明:平面
(Ⅱ) 求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱的所有棱长都为,且平面中点.

(Ⅰ)求证:
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:
(3)求SC与底面ABCD所成角的正切值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是正方形,侧面底面,若分别为的中点.

(Ⅰ) 求证://平面
(Ⅱ) 求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知空间四边形中,的中点.

(Ⅰ)求证:平面CDE;
(Ⅱ)若G为的重心,试在线段AE上确定一点F,使得GF//平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.

(1)求证:AB⊥平面PBC;
(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;
(3)在(2)的条件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四边形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,是正三角形,都垂直于平面,且的中点.

求证:(1)平面
(2).

查看答案和解析>>

同步练习册答案
闂佺ǹ楠忛幏锟� 闂傚倸鍋婇幏锟�