精英家教网 > 高中数学 > 题目详情
20.过△ABC所在平面α外一点P,作PO⊥α,垂足为O,连接PA,PB,PC,若点O是△ABC的内心,则(  )
A.PA=PB=PCB.点P到AB,BC,AC的距离相等
C.PA⊥PB,PB⊥PC,PC⊥PAD.PA,PB,PC与平面α所成的角相等

分析 过O做三角形ABC三边的高OD,OE,OF,连接PD,PE,PF,构造直角三角形,利用三角形的全等得出PD=PE=PF,再利用线面垂直的性质得出PD⊥AB,PE⊥BC,PF⊥AC,从而得出P到AB,BC,AC的距离相等.

解答 解:过O做三角形ABC三边的高,垂足分别为D,E,F,连接PD,PE,PF,如图所示:
∵O是△ABC的内心,
∴OD=OE=OF,
∵PO⊥平面α,OD?平面α,OE?平面α,OF?平面α,
∴PO⊥OD,PO⊥OE,PO⊥OF,
∴Rt△POD=Rt△POE=RtPOF,
∴PD=PE=PF,
∵AB⊥OD,AB⊥PO,
∴AB⊥平面POD,
∴AB⊥PD,即PD为P到AB的距离,
同理PE⊥BC,PF⊥AC,
∴点P到AB,BC,AC的距离相等.
故选B.

点评 本题考查了线面垂直的性质与判定,空间距离的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.要计算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{2016}$的结果,下面程序框图中的判断框内可以填(  )
A.n<2016B.n>2016C.n≤2016D.n≥2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的方程为2x+my-4m-4=0,m∈R,点P的坐标为(-1,0).
(1)求证:直线l恒过定点,并求出定点坐标;
(2)设点Q为直线l上的动点,且PQ⊥l,求|PQ|的最大值;
(3)设点P在直线l上的射影为点A,点B的坐标为($\frac{9}{2}$,5),求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将函数f(x)=$\sqrt{x}$中的自变量x用x=g(t)替换,替换后所得的函数F(t)=$\sqrt{g(t)}$与原函数f(x)的值域相同,则函数g(t)可以是下列函数中的①③④(请填写所有满足条件的g(t)的编号).
①g(t)=t${\;}^{\frac{1}{2}}$;②g(t)=2t;③g(t)=3t-5;④g(t)=($\frac{1}{2}$)t-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)定义域为R,且f'(x)>1-f(x),f(0)=2,则不等式f(x)>1+e-x的解集为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.矩阵的一种运算$({\begin{array}{l}a&b\\ c&d\end{array}})({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}{ax+by}\\{cx+dy}\end{array}})$,该运算的几何意义为平面上的点(x,y)在矩阵$({\begin{array}{l}a&b\\ c&d\end{array}})$的作用下变换成点(ax+by,cx+dy),若曲线x2+4xy+2y2=1在矩阵$({\begin{array}{l}1&a\\ b&1\end{array}})$的作用下变换成曲线x2-2y2=1,则ab=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若a<b<0,则下列不等式错误的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.a3>b3C.a2>b2D.$\frac{b}{a}+\frac{a}{b}>2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,某观光休闲庄园内有一块扇形花卉园OAB,其中O为扇形所在圆的圆心,扇形半径为500米,cos∠AOB=$\frac{1}{4}$.庄园经营者欲在花卉园内修建一条赏花长廊,分别在边OA、弧$\widehat{AB}$、边OB上选点D,C,E修建赏花长廊CD,CE,且CD∥OB,CE∥OA,设CD长为x米,CE长为y米.
(Ⅰ)试求x,y满足的关系式;
(Ⅱ)问x,y分别为何值时,才能使得修建赏花长廊CD与CE的总长最大,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1⊥平面ABC,AA1=AB,M,N分别是A1B1,A1C1的中点,则BM与AN所成角的余弦值为(  )
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案