精英家教网 > 高中数学 > 题目详情

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(Ⅰ)求图中a的值;
(Ⅱ)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;
(Ⅲ)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率?

【答案】解:(Ⅰ)由题意得10a+0.01×10+0.02×10+0.03×10+0.035×10=1,所以a=0.005. (Ⅱ)由直方图分数在[50,60]的频率为0.05,[60,70]的频率为0.35,[70,80]的频率为0.30,
[80,90]的频率为0.20,[90,100]的频率为0.10,所以这100名学生期中考试数学成绩的平均分的估计值为:55×0.05+65×0.35+75×0.30+85×0.20+95×0.10=74.5
(Ⅲ)由直方图,得:
第3组人数为0.3×100=30,
第4组人数为0.2×100=20人,
第5组人数为0.1×100=10人.
所以利用分层抽样在60名学生中抽取6名学生,
每组分别为:
第3组: 人,
第4组: 人,
第5组: =1人.
所以第3、4、5组分别抽取3人、2人、1人.
设第3组的3位同学为A1 , A2 , A3 , 第4组的2位同学为B1 , B2 , 第5组的1位同学为C1 , 则从六位同学中抽两位同学有15种可能如下:
(A1 , A2),(A1 , A3),(B1 , B2),(A2 , A3),(A1 , B1),(A1 , B2),(A2 , B1),(A2 , B2),(A3 , B1),(A3 , B2),(A1 , C1),(A2 , C1),(A3 , C1),(B1 , C1),(B2 , C1),
其中恰有1人的分数不低于90(分)的情形有:(A1 , C1),(A2 , C1),(A3 , C1),(B1 , C1),(B2 , C1),共5种.
所以其中第4组的2位同学至少有一位同学入选的概率为

【解析】(1)根据所以概率的和为1,即所求矩形的面积和为1,建立等式关系,可求出所求;(2)均值为各组组中值与该组频率之积的和;(3)先分别求出3,4,5组的人数,再利用古典概型知识求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PA⊥底面ABCD,AB⊥AC,AB=1,BC=2,PA= ,E为BC的中点.
(1)证明:PE⊥ED;
(2)求二面角E﹣PD﹣A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B两地的距离是120km,按交通法规规定,A,B两地之间的公路车速应限制在50~100km/h,假设汽油的价格是6元/升,以xkm/h速度行驶时,汽车的耗油率为 ,司机每小时的工资是36元,那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,恒有成立,且,对任意的,则成立的充要条件是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若有三个极值点,求的取值范围;

(2)若对任意都恒成立的的最大值为,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cos2ωx+2sinωxcosωx(ω>0)的最小正周期为π.
(1)求f( )的值;
(2)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4;坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).在以坐标原点为极点, 轴正半轴为极轴的极坐标中,曲线

(Ⅰ)求直线的普通方程和曲线的直角坐标方程.

(Ⅱ)求曲线上的点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一元二次不等式﹣x2+x+2>0的解集是(
A.{x|x<﹣1或x>2}
B.{x|x<﹣2或x>1}
C.{x|﹣1<x<2}
D.{x|﹣2<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场调查和预测,投资债券等稳键型产品A的收益与投资成正比,其关系如图1所示;投资股票等风险型产品B的收益与投资的算术平方根成正比,其关系如图2所示(收益与投资单位:万元).
(1)分别将A、B两种产品的收益表示为投资的函数关系式;
(2)该家庭现有10万元资金,并全部投资债券等稳键型产品A及股票等风险型产品B两种产品,问:怎样分配这10万元投资,才能使投资获得最大收益,其最大收益为多少万元?

查看答案和解析>>

同步练习册答案