精英家教网 > 高中数学 > 题目详情
若在曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”.下列方程:
①x2-y2=1;
②y=x2-|x|;
③y=3sinx+4cosx;
|x|+1=
4-y2

对应的曲线中存在“自公切线”的有______.
①x2-y2=1是一个等轴双曲线,没有自公切线;
②y=x2-|x|=
(x-
1
2
)2-
1
4
,x≥0
(x+
1
2
)2-
1
4
,x<0
,在x=
1
2
和x=-
1
2
处的切线都是y=-
1
4
,故②有自公切线.
③y=3sinx+4cosx=5sin(x+φ),cosφ=
3
5
,sinφ=
4
5
,此函数是周期函数,过图象的最高点的切线都重合或过图象的最低点的切线都重合,故此函数有自公切线.
④由于|x|+1=
4-y2
,即x2+2|x|+y2-3=0,结合图象可得,此曲线没有自公切线.
故答案为②③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知H(-3,0),点Py轴上,点Qx轴的正半轴上,点M在直线PQ上,且满足
⑴当点Py轴上移动时,求点M的轨迹C
⑵过点T(-1,0)作直线l与轨迹C交于AB两点,若在x轴上存在一点E(x0,0),使得ABE是等边三角形,求x0的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知直线l与椭圆(ab>0)相交于不同两点AB,,且,以M为焦点,以椭圆的右准线为相应准线的双曲线与直线l相交于N(4,1). (I)求椭圆的离心率; (II)设双曲线的离心率为,记,求的解析式,并求其定义域和值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为椭圆左、右焦点,过椭圆中心任作一条直线与椭圆交于两点,当四边形面积最大时,的值等于         .               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线上一点到其焦点的距离为
(I)求的值;
(II)设抛物线上一点的横坐标为,过的直线交于另一点,交轴于点,过点的垂线交于另一点.若的切线,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知不过坐标原点O的直线L与抛物线y2=2x相交于A、B两点,且OA⊥OB,OE⊥AB于E.
①求证:直线L过定点;
②求点E的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率e=
1
2
的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动.
(1)当m=1时,求椭圆C2的方程;
(2)当△PF1F2的边长恰好是三个连续的自然数时,求△MPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C:
x2
9
+
y2
4
=1
,斜率为k的直线l与椭圆相交于点M,N,点A是线段MN的中点,直线OA(O为坐标原点)的斜率是k′,那么kk′=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动圆过定点A(-3,0)且和定圆(x-3)2+y2=4外切,则动圆圆心P的轨迹为(  )
A.双曲线B.椭圆C.抛物线D.双曲线一支

查看答案和解析>>

同步练习册答案