精英家教网 > 高中数学 > 题目详情
3.已知直线y=x+k与曲线y=ex相切,则k的值为(  )
A.eB.2C.1D.0

分析 设切点为(x0,y0),求出切线斜率,利用切点在直线上,代入方程,即可得到结论.

解答 解:设切点为(x0,y0),则y0=ex0
∵y′=(ex)′=ex,∴切线斜率k=ex0
又点(x0,y0)在直线上,代入方程得y0=k+x0
即ex0=ex0 +x0
解得x0=0,k=1,
故选:C.

点评 本题考查切线方程,考查导数的几何意义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}{2^x}({x≤0})\\ \sqrt{x}({x>0})\end{array}\right.$若函数g(x)=f(x)-k(x-1)有且只有一个零点,则实数k的取值范围是(  )
A.(-∞,-1)B.(0,+∞)C.(-1,0)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{2}+{y}^{2}=1$和圆O:x2+y2=1,过点A(m,0)(m>1)作两条互相垂直的直线l1,l2,l1于圆O相切于点P,l2与椭圆相交于不同的两点M,N.
(1)若m=$\sqrt{2}$,求直线l1的方程;
(2)求m的取值范围;
(3)求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a∈R,函数f(x)═log2($\frac{1}{x}$+a).
(1)若f(1)<2,求实数a的取值范围;
(2)设函数g(x)=f(x)-log2[(a-4)x+2a-5],讨论函数g(x)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两座灯塔A和B与海洋观测站C的距离分别是akm和2akm,灯塔A在观测站C的北偏东20°,灯塔B在观测站C的南偏东70°,则灯塔A与灯塔B之间的距离为(  )
A.$\sqrt{3}$akmB.2akmC.$\sqrt{5}$akmD.$\sqrt{7}$akm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知p:函数f(x)=lg(x2-2x+a)的定义域为R;q:对任意实数x,不等式4x2+ax+1>0成立,若“p∨q”为真,“p∧q”为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.要从165名学生中抽取15人进行视力检查,现采用分层抽样法进行抽取,若这165名同学中,高中生为66人,则高中生中被抽取参加视力检查的人数为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左焦点为F1,对定点M(6,4),若P为椭圆上一点,则|PF1|+|PM|的最大值为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)=x2+$\frac{a-1}{x}$为偶函数,则实数a=1.

查看答案和解析>>

同步练习册答案