精英家教网 > 高中数学 > 题目详情
1.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}\right.$,则目标函数z=4x+2y的最大值为(  )
A.12B.10C.8D.2

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=4x+2y得y=-2x+$\frac{1}{2}$z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+$\frac{1}{2}$z经过点C时,直线y=-2x+$\frac{1}{2}$的截距最大,
此时z最大.
由$\left\{\begin{array}{l}x+y=3\\ y=1\end{array}\right.$,解得$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$,即C(2,1),
代入目标函数z=4x+2y得z=4×2+2×1=10.
即目标函数z=4x+2y的最大值为10.
故选:B

点评 本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.直线y=2x-2被圆(x-2)2+(y-2)2=25所截得的弦长为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知抛物线y2=4x的焦点为F,直线l过F且依次交抛物线及圆${(x-1)^2}+{y^2}=\frac{1}{4}$于点A,B,C,D四点,则4|AB|+9|CD|的最小值为$\frac{37}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=-x2-10x在(-∞,λ]上是增函数,则方程组$\left\{\begin{array}{l}({λ-1})x+4y=1\\ 3x+λy=2\end{array}\right.$的解的组数为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin(2x+$\frac{π}{3}$),则函数f(x)图象的对称轴为(  )
A.x=$\frac{π}{12}$+kπ(k∈z)B.x=$\frac{π}{12}$+$\frac{kπ}{2}$(k∈z)C.x=-$\frac{π}{6}$+kπ(k∈z)D.x=-$\frac{π}{6}$+$\frac{kπ}{2}$(k∈z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设变量x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{x-y≥0}\\{2x-y-2≤0}\end{array}\right.$,则z=3x-2y的最大值是(  )
A.8B.5C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的长轴是圆x2+y2=4的一条直径,且右焦点到直线x+y-2$\sqrt{3}$=0的距离为$\frac{{\sqrt{6}}}{2}$.
(1)求椭圆C的标准方程;
(2)是否存在直线l:y=kx+m(k∈R)与椭圆C交于A,B两点,使得$|{2\overrightarrow{OA}+\overrightarrow{OB}}|=|{2\overrightarrow{OA}-\overrightarrow{OB}}$|成立?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y都是正数,且xy=x+y,则4x+y的最小值为(  )
A.6B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若关于x的函数f(x)=$\frac{a{x}^{2}+2x+{a}^{2}+sinx}{{x}^{2}+a}$,(a>0)的最大值为M,最小值为N,且M+N=8,则实数a的值为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案