精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax+b(a,b∈R),g(x)=x2+c(c<0)
(1)请用f(0)和f(1)表示出a,b
(2)若对任意的x∈[0,1],都有0≤f(x)≤1,求ab的最大值
(3)已知a=1,b和c是闭区间l的两个端点,若对任意的x∈l,都有f(x)g(x)≥0,求|b-c|的最大值.
考点:函数的最值及其几何意义
专题:综合题,函数的性质及应用
分析:(1)f(0)=b,f(1)=a+b,即可用f(0)和f(1)表示出a,b
(2)ab=f(0)[f(1)-f(0)]=-f2(0)+f(1)f(0)看作关于f(0)的二次函数,可求ab的最大值;
(3)f(x)=x+b(x+b)(x2+c)≥0,再分类讨论,即可求|b-c|的最大值.
解答: 解:(1)f(0)=b,f(1)=a+b
∴b=f(0),a=f(1)-b=f(1)-f(0)
(2)ab=f(0)[f(1)-f(0)]=-f2(0)+f(1)f(0)
看作关于f(0)的二次函数,所以最大值为-
f2(1)
-4
=
1
4
f2(1)≤
1
4

(3)f(x)=x+b(x+b)(x2+c)≥0
∴x≥-b且x2≥-c 或x≤-b且x2≤-c
若b<c<0,则①b≥-b且c2≥-c,矛盾;
②c≤-b,b2≤-c,∴|b-c|max=|
-c
-c|≤
1
4

若c<b,则①b≥-b且c≥-c,b≥0,c≥0,矛盾;
②b≤-b,b2+c≤-c,c2+c≤-c,b≤0,c<0,
∴|b-c|max=|
-2c
-c|≤
1
2

综上,|b-c|max=
1
2
点评:本题考查函数的最值及其几何意义,考查学生分析解决问题的能力,考查学生的计算能力,有难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项系数为a(a<0),且f(x)=-2x的实数根为1和3,若函数y=(x)+6a只有一个零点,求f(x) 的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若棱台的上下底面面积分别为4和9,高为3,则该棱台的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的一个焦点为(0,2),离心率为
2
2
,则其标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中既是偶函数,又在(-1,0)上为减函数的是(  )
A、y=cosx
B、y=-|x-1|
C、y=ln
2-x
2+x
D、y=ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=(
5
2
3,b=log
1
2
5,c=(
2
5
-2,则a,b,c按从小到大排列的顺序是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a2x-2ax+3(a>0且a≠1),x∈[-1,2],求f(x)的最值和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)为R上的偶函数,g(x)=f(x-1)为R上的奇函数,且g(1)=2,则f(2014)的值为(  )
A、1B、2C、-1D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(-2,4),且方向向量
d
=(2,4)的直线点方向式方程为
 

查看答案和解析>>

同步练习册答案