A. | 向左平移$\frac{π}{12}$ | B. | 向右平移$\frac{π}{12}$ | C. | 向左平移$\frac{π}{6}$ | D. | 向右平移$\frac{π}{6}$ |
分析 由条件根据函数y=Asin(ωx+φ)的周期性,函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:由题意可得函数f(x)=sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期为2×$\frac{π}{2}$=π,即$\frac{2π}{ω}$=π,
可得:ω=2,
由于:f(x)=sin(2x+$\frac{π}{6}$)=sin2(x+$\frac{π}{12}$),
故将f(x)的图象向右平移$\frac{π}{12}$个单位,可得函数g(x)=sin2x的图象,
故选:B.
点评 本题主要考查函数y=Asin(ωx+φ)的周期性,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 若α⊥β,a⊥b,a⊥α,则b⊥β | B. | 若α⊥β,a⊥b,a⊥α,则b∥β | ||
C. | 若α⊥β,a∥α,b∥β,则a⊥b | D. | 若α∥β,a⊥α,b?β,则a⊥b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {1,3} | B. | {-3,-1,1} | C. | {-3,1} | D. | {-1,1,3} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}•{(\frac{1}{2})^{n-1}}$ | B. | $\frac{1}{2}•{(\frac{2}{3})^{n-1}}$ | C. | $2•{(\frac{1}{3})^n}-\frac{1}{3}$ | D. | ${(\frac{1}{3})^n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 8 | C. | 12 | D. | 16 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com