精英家教网 > 高中数学 > 题目详情

【题目】如图,正三棱柱中,中点,上的一点,.

(1)若平面,求证:.

(2)平面将棱柱分割为两个几何体,记上面一个几何体的体积为,下面一个几何体的体积为,求.

【答案】(1)证明过程见解析;(2)

【解析】试题分析:

(1)由题意可得四点在同一个平面上,则易知.

(2)由题意转化顶点可求得棱锥的体积.

试题解析:

(1)如图,取中点,连接.

棱柱为正三棱柱,

为正三角形,侧棱两两平行且都垂直于平面.

平面 平面

平面 四点在同一个平面上.

平面平面,平面平面

中点,即.

(2)正三棱柱的底面积,则体积.

下面一个几何体为四棱锥,底面积,因为平面平面,过点上的高线,由平面与平面垂直的性质可得此高线垂直于平面,故四棱锥的高,则,从而.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是

A. B. C. D. 乙和丙都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次小型抽奖活动中,抽奖规则如下:一个不透明的口袋中共有6个大小相同的球,它们是1个红球,1个黄球,和4个白球,从中抽到红球中50元,抽到黄球中10元,抽到白球不中奖.某人从中一次性抽出两球,求:
(1)该人中奖的概率;
(2)该人获得的总奖金X(元)的分布列和均值E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的算法流程图中,输出S的值为(

A.32
B.42
C.52
D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的方程为,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.

(1)求点的轨迹方程;

(2)设直线与直线的夹角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2+aln(x+1).
(1)求函数f(x)的单调区间;
(2)若函数F(x)=f(x)+ln 有两个极值点x1 , x2且x1<x2 , 求证F(x2)>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017四川宜宾二诊】已知函数.

(I)若,求函数的单调区间;(其中是自然对数的底数)

(II)设函数,当时,曲线有两个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017重庆二诊】已知函数,设关于的方程个不同的实数解,则的所有可能的值为(

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

同步练习册答案