【题目】如图,正三棱柱中,为中点,为上的一点,.
(1)若平面,求证:.
(2)平面将棱柱分割为两个几何体,记上面一个几何体的体积为,下面一个几何体的体积为,求.
科目:高中数学 来源: 题型:
【题目】“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”.规定每一项运动的前三名得分都分别为,,(且),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的马术比赛获得了第一名,则游泳比赛的第三名是
A. 甲 B. 乙 C. 丙 D. 乙和丙都有可能
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次小型抽奖活动中,抽奖规则如下:一个不透明的口袋中共有6个大小相同的球,它们是1个红球,1个黄球,和4个白球,从中抽到红球中50元,抽到黄球中10元,抽到白球不中奖.某人从中一次性抽出两球,求:
(1)该人中奖的概率;
(2)该人获得的总奖金X(元)的分布列和均值E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的方程为,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.
(1)求点的轨迹方程;
(2)设直线与直线的夹角为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x2+aln(x+1).
(1)求函数f(x)的单调区间;
(2)若函数F(x)=f(x)+ln 有两个极值点x1 , x2且x1<x2 , 求证F(x2)> .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017四川宜宾二诊】已知函数且.
(I)若,求函数的单调区间;(其中是自然对数的底数)
(II)设函数,当时,曲线与有两个交点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com