精英家教网 > 高中数学 > 题目详情

(本题满分14分) 设函数f (x)=ln x在(0,) 内有极值.
(Ⅰ) 求实数a的取值范围;
(Ⅱ) 若x1∈(0,1),x2∈(1,+).求证:f (x2)-f (x1)>e+2-
注:e是自然对数的底数.

(Ⅰ)解:时,

内有解.令
不妨设,则,所以
解得.                               
(Ⅱ)解:由
,或
内递增,在内递减,在内递减,在递增.
,得
,
所以
因为
所以

, (),
在(0,+∞)上单调递增,
所以.         

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知是定义在上的奇函数,当时,
(1)求的解析式;
(2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由。
(3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖。求证:若时,函数在区间上被函数覆盖。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(1)若函数处与直线相切;
(1) ①求实数的值;      ②求函数上的最大值;
(2)当时,若不等式对所有的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题15分)已知函数是奇函数,且图像在点 为自然对数的底数)处的切线斜率为3.
(1)  求实数的值;
(2)  若,且对任意恒成立,求的最大值;
(3)  当时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为实数).
(I)若处有极值,求的值;
(II)若上是增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数)若上是增函数,在(0,1)上是减函数,函数在R上有三个零点,且1是其中一个零点。
(1)求b的值;
(2)求最小值的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)求的单调区间;
(2)求上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,求证:
(3)设为数列的前项和,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f (x)=ax-ln(-x),x∈(-e,0),g(x)=-,其中e是自然常数,a∈R.
(1)讨论a=-1时, f (x)的单调性、极值;
(2)求证:在(1)的条件下,|f (x)|>g(x)+1/2;
(3)是否存在实数a,使f (x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案