精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴,取相同的单位长度建立极坐标系,已知曲线,直线.

(1)将曲线上所有点的横坐标、纵坐标分别伸长为原来的2倍、倍后得到曲线,请写出直线,和曲线的直角坐标方程;

(2)若直线经过点 与曲线交于点,求的值.

【答案】(1) (2)2.

【解析】试题分析:(1)利用极坐标和直角坐标的关系可得直角坐标方程为,根据伸缩变化法则可得的方程为;(2)写出直线的参数方程为,联立直线和曲线,根据参数的几何意义结合韦达定理可得结果.

试题解析:(1)因为,所以的直角坐标方程为

设曲线上任一点坐标为,则,所以

代入方程得: ,所以的方程为.

(2)直线 倾斜角为,由题意可知,

直线的参数方程为为参数),

联立直线和曲线的方程得, .设方程的两根为,则,由直线参数的几何意义可知, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列中,若是整数,且,且).

(Ⅰ)若 ,写出的值;

(Ⅱ)若在数列的前2018项中,奇数的个数为,求得最大值;

(Ⅲ)若数列中, 是奇数, ,证明:对任意 不是4的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)设函数,求函数的单调区间;

(3)若在区间不存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求 的值;

(2)试猜想的表达式(用一个组合数表示),并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中.

1)设讨论的单调性;

2)若函数内存在零点,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1以直线所过的定点为一个焦点,且短轴长为4.

Ⅰ)求椭圆C1的标准方程;

Ⅱ)已知椭圆C2的中心在原点,焦点在y轴上,且长轴和短轴的长分别是椭圆C1的长轴和短轴的长的(1),过点C(1,0)的直线l与椭圆C2交于AB两个不同的点,若,求△OAB的面积取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知底面为平行四边形, ,三角形为锐角三角形,面,设的中点.

求证: (1)

(2) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中指数的监测数据,统计结果如下:

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

4

13

18

30

9

11

15

记某企业每天由空气污染造成的经济损失为 (单位:元), 指数为.当在区间内时对企业没有造成经济损失;当在区间内时对企业造成经济损失成直线模型(当指数为150时造成的经济损失为500元,当指数为200 时,造成的经济损失为700元);当指数大于300时造成的经济损失为2000元.

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100

(1)试写出的表达式;

(2)试估计在本年内随机抽取一天,该天经济损失大于500元且不超过900元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有的把握认为郑州市本年度空气重度污染与供暖有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数, ,都有,且当时, ,若函数)在区间内恰有三个不同零点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案