精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图所示,已知六棱锥的底面是正六边形,平面的中点。

(Ⅰ)求证:平面//平面
(Ⅱ)设,当二面角的大小为时,求的值。

(Ⅰ)只需证OM//PD, BE//DC;(Ⅱ)

解析试题分析:(Ⅰ)连接AD交BE与点O,连接OM,因为的中点,O为AD的中点,所以OM//PD,在正六边形中,BE//DC,又BE∩OM=O,PD∩DC=D,所以平面//平面
(Ⅱ)以A为原点,AE、AB、AP所在直线分别为轴,建立空间直角坐标系,设AB=a,则AP=,所以,设面DME的法向量为,面FME的法向量为,则

因为二面角的大小为,所以,解得
考点:线面垂直的性质定理;面面平行的判定定理;二面角。
点评:用向量法求二面角,优点是思维含量少,确定是计算较为复杂。因为我们再用向量法求二面角时,一定要认真、仔细。避免出现计算错误。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知:如图,中,是角平分线。求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在直三棱柱ABC-A1B1C1中, AC⊥BC.

(1) 求证:平面AB1C1⊥平面AC1
(2) 若AB1⊥A1C,求线段AC与AA1长度之比;
(3) 若D是棱CC1的中点,问在棱AB上是否存在一点E,使DE∥平面AB1C1?若存在,试确定点E的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,等腰△ABC的底边AB=6,高CD=3,点E是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记,用表示四棱锥P-ACFE的体积.

(Ⅰ)求 的表达式;
(Ⅱ)当x为何值时,取得最大值?
(Ⅲ)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,已知正四棱柱ABCD—A1B1C1D1中,底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交B1C于点F,

⑴求证:A1C⊥平面BDE;
⑵求A1B与平面BDE所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,已知三棱锥OABC的侧棱OAOBOC两两垂直,且OA=2,OB=3,OC=4,EOC的中点.

(1)求异面直线BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)如图,在六面体中,.

求证:(1);(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,斜三棱柱中,侧面底面ABC,侧面是菱形,EF分别是AB的中点.

求证:(1)EF∥平面
(2)平面CEF⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为的正方形, ,且点满足 .

(1)证明:平面 .
(2)在线段上是否存在点,使得平面?若存在,确定点的位置,若不存在请说明理由 .

查看答案和解析>>

同步练习册答案