【题目】元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每满万元,可减千元;方案二:金额超过万元(含万元),可摇号三次,其规则是依次装有个幸运号、个吉祥号的一个摇号机,装有个幸运号、个吉祥号的二号摇号机,装有个幸运号、个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出个幸运号则打折,若摇出个幸运号则打折;若摇出个幸运号则打折;若没有摇出幸运号则不打折.
(1)若某型号的车正好万元,两个顾客都选中第二中方案,求至少有一名顾客比选择方案一更优惠的概率;
(2)若你评优看中一款价格为万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.
【答案】(1)(2)选择第二种方案根划算
【解析】试题分析:(1)根据条件可得若选择方案二优惠,即至少有一次摸出的是幸运球,其对立事件是三次都没有摸出幸运球,其概率为 ,那么两个人至少有一个人选择方案二优惠的概率为;(2)选择方案一的价格为 (万元),选择方案二,先列出付款金额的分布列,求的期望,然后再比较.
试题解析:(1)选择方案二方案一更优惠,则需要至少摸出一个幸运球,设顾客不打折即三次没摸出幸运球为事件,则,故所求概率.
(2)若选择方案一,则需付款(万元).
若选择方案二,设付款金额为万元,则可能的取值为,
,
, ,
故的分布列为
6 | 7 | 8 | 10 | |
所以(万元)(万元),
所以选择第二种方案根划算.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, , 平面, .
(1)设点为的中点,求证: 平面;
(2)线段上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an},a1=1,an+1= + ,数列{bn},bn=2n﹣1an .
(1)求证:数列{bn}为等差数列,并求出{bn}的通项公式;
(2)数列{an}的前n项和为Sn , 求Sn;
(3)正数数列{dn}满足 = .设数列{dn}的前n项和为Dn , 求不超过D100的最大整数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最小正周期是 ,最小值是﹣2,且图象经过点( ,0),则f(0)= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:以点为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△OAB的面积为定值; (2)设直线y=-2x+4与圆C交于点M,N,若|OM|=|ON|,求圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点A(﹣2,0),B(0,2),且圆心C在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点.
(1)求圆C的方程;
(2)若,求实数k的值;
(3)过点(0,4)作动直线m交圆C于E,F两点.试问:在以EF为直径的所有圆中,是否存在这样的圆P,使得圆P经过点M(2,0)?若存在,求出圆P的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x2+mx+1=0有两个不等的负根;命题q:4x2+4(m﹣2)x+1=0无实根.若命题p与命题q有且只有一个为真,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为了测量正在海面匀速行驶的某船的速度,在海岸上选取距离1千米的两个观察
点C、D,在某天10:00观察到该船在A处,此时测得∠ADC=30°,2分钟后该船行驶至B处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,
求该船航行的速度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(wx+φ)(x∈R,w>0,0<φ< )的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x﹣ )﹣f(x+ )的单调递增区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com