精英家教网 > 高中数学 > 题目详情

【题目】为振兴旅游业,香港计划向内陆地区发行总量为2000万张的紫荆卡,其中向内陆人士(广东户籍除外)发行的是紫荆金卡(简称金卡),向广东籍人士发行的是紫荆银卡(简称银卡).某旅游公司组织了一个有36名内陆游客的旅游团到香港名胜旅游,其中是非广东籍内陆游客,其余是广东籍游客.在非广东新游客中有持金卡,在广东籍游客中有持银卡.

(Ⅰ)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;

(Ⅱ)在该团的广东籍游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望.

【答案】12)见解析

【解析】试题分析:(Ⅰ)由题意得,境外游客有27人,其中9人持金卡;境内游客有9人,其中6人持银卡.记出事件,表示出事件的概率,根据互斥事件的概率公式,得到结论;(Ⅱ)ξ的可能取值为0,1,2,3,分别求出其对应的概率,能得到ξ的分布列和数学期望Eξ.

解析:

(Ⅰ)由题意得,非广东籍游客有27人,其中9人持金卡:广东籍游客有9人,其中6人持银卡,设事件为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”,

事件为“采访该团3人中,1人持金卡,0人持银卡”,

事件为“采访该团3人中,1人持金卡,1人持银卡”.

所以在该团中随机来访3人,恰有1人持金卡且持银卡者少于2人的概率是.

(Ⅱ)的可能取值为0,1,2,3.

所以的分布列为

0

1

2

3

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知不等式

(1) 若对于所有的实数x不等式恒成立,求m的取值范围;

(2) 设不等式对于满足的一切m的值都成立,求x的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率为80%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生09之间取整数值的随机数,指定1,2,3,4,5,6,7,8表示命中,9,0表示未命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:

907

966

191

925

271

932

812

458

569

683

431

257

393

027

556

488

730

113

537

989

据此估计,该运动员三次投篮均命中的概率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自出生之日起,人的情绪、体力、智力等心理、生理状况就呈周期变化,变化由线为.根据心理学家的统计,人体节律分为体力节律、情绪节律和智力节律三种.这些节律的时间周期分别为23天、28天、33.每个节律周期又分为高潮期、临界日和低潮期三个阶段.以上三个节律周期的半数为临界日,这就是说11.5天、14天、16.5天分别为体力节律、情绪节律和智力节律的临界日.临界日的前半期为高潮期,后半期为低潮期.生日前一天是起始位置(平衡位置),已知小英的生日是2003320日(每年按365天计算).

1)请写出小英的体力、情绪和智力节律曲线的函数;

2)试判断小英在2019422日三种节律各处于什么阶段,当日小英是否适合参加某项体育竞技比赛?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生对某小区30位居民的饮食习惯进行了一次调查,并用如图所示的茎叶图表示他们的饮食指数(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的,饮食以肉类为主).

(1)根据茎叶图,说明这30位居民中50岁以上的人的饮食习惯;

(2)根据以上数据完成如下2×2列联表;

主食蔬菜

主食肉类

总计

50岁以下

50岁以上

总计

(3)能否有99%的把握认为居民的饮食习惯与年龄有关?

独立性检验的临界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行调查,通过抽样,获得某年100为居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.

(1)求直方图的的值;

(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由.

(3)估计居民月用水量的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若acos2ccos2b,那么abc的关系是(

A.a+bcB.a+c2bC.b+c2aD.abc

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】墙上有一壁画,最高点处离地面米,最低点处离地面米,距离墙米处设有防护栏,观察者从离地面高米的处观赏它.

1)当时,观察者离墙多远时,视角最大?

2)若,视角的正切值恒为,观察者离墙的距离应在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入(万元)满足,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,完成下列问题:

1)写出利润函数的解析式(利润=销售收入-总成本);

2)甲厂生产多少台产品时,可使盈利最多?

查看答案和解析>>

同步练习册答案