¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªµãA£¨0£¬-3£©£¬¶¯µãPÂú×ã|PA|=2|PO|£¬ÆäÖÐOΪ×ø±êÔ­µã£®
£¨¢ñ£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£®
£¨¢ò£©¼Ç£¨¢ñ£©ÖÐËùµÃµÄÇúÏßΪC£®¹ýÔ­µãO×÷Á½ÌõÖ±Ïßl1£ºy=k1x£¬l2£ºy=k2x·Ö±ð½»ÇúÏßCÓÚµãE£¨x1£¬y1£©¡¢F£¨x2£¬y2£©¡¢G£¨x3£¬y3£©¡¢H£¨x4£¬y4£©£¨ÆäÖÐy2£¾0£¬y4£¾0£©£®ÇóÖ¤£º
k1x1x2
x1+x2
=
k2x3x4
x3+x4
£»
£¨III£©¶ÔÓÚ£¨¢ò£©ÖеÄE¡¢F¡¢G¡¢H£¬ÉèEH½»xÖáÓÚµãQ£¬GF½»xÖáÓÚµãR£®ÇóÖ¤£º|OQ|=|OR|£®£¨Ö¤Ã÷¹ý³Ì²»¿¼ÂÇEH»òGF´¹Ö±ÓÚxÖáµÄÇéÐΣ©
·ÖÎö£º£¨1£©ÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬½ø¶ø±íʾ³ö|PA|ºÍ|PO|£¬¸ù¾Ý|PA|=2|PO|£¬ÇóµÄµãPµÄ¹ì¼£·½³Ì£®
£¨2£©½«Ö±ÏßEFºÍGHµÄ·½³Ì·Ö±ð´úÈëÔ²C·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí·Ö±ðÇóµÃ½»µãºá×ø±êÖ®ºÍÓëÖ®»ý£¬½ø¶ø´úÈë
k1x1x2
x1+x2
ºÍ
k2x3x4
x3+x4
£¬Ö¤Ã÷ԭʽ£®
£¨3£©ÉèµãQ£¨q£¬0£©£¬µãQ£¨r£¬0£©£¬ÓÉE¡¢Q¡¢HÈýµã¹²ÏßÇóµÃqµÄ±í´ïʽ£¬¸ù¾ÝF¡¢R¡¢GÈýµã¹²ÏßÇóµÃrµÄ±í´ïʽ£¬½ø¶ø¸ù¾Ý£¨2£©ÖеÄ
k1x1x2
x1+x2
=
k2x3x4
x3+x4
ÕûÀíµÃ
(k1-k2)x2x3
k1x2-k2x3
+
(k1-k2)x1x4
k1x1-k2x4
=0
£¬½ø¶ø¿ÉÖªq+r=0£¬ËùÒÔ|q|=|r|£¬¼´|OQ|=|OR|£®
½â´ð£º¾«Ó¢¼Ò½ÌÍø½â£º£¨¢ñ£©ÉèµãP£¨x£¬y£©£¬ÒÀÌâÒâ¿ÉµÃ
x2+(y+3)2
=2
x2+y2

ÕûÀíµÃx2+y2-2y-3=0
¹Ê¶¯µãPµÄ¹ì¼£·½³ÌΪx2+y2-2y-3=0£®
£¨¢ò£©½«Ö±ÏßEFµÄ·½³Ìy=k1x´úÈëÔ²C·½³Ì
ÕûÀíµÃ£¨k12+1£©x2-2k1x-3=0
¸ù¾Ý¸ùÓëϵÊýµÄ¹ØϵµÃx1+x2=
2k1
k12+1
£¬x1x2=-
3
k12+1
¢Ù
½«Ö±ÏßGHµÄ·½³Ìy=k2x´úÈëÔ²C·½³Ì£¬
ͬÀí¿ÉµÃx3+x4=
2k2
k22+1
£¬x3x4=-
3
k22+1
¢Ú
ÓÉ¢Ù¡¢¢Ú¿ÉµÃ
k1x1x2
x1+x2
=-
3
2
=
k2x3x4
x3+x4
£¬ËùÒÔ½áÂÛ³ÉÁ¢£®
£¨¢ó£©ÉèµãQ£¨q£¬0£©£¬µãQ£¨r£¬0£©£¬ÓÉE¡¢Q¡¢HÈýµã¹²Ïß
µÃ
x1-q
k1x1
=
x4-q
k2x4
£¬½âµÃq=
(k1-k2)x1x4
k1x1-k2x4

ÓÉF¡¢R¡¢GÈýµã¹²Ïß
ͬÀí¿ÉµÃr=
(k1-k2)x2x3
k1x2-k2x3

ÓÉ
k1x1x2
x1+x2
=
k2x3x4
x3+x4
±äÐεÃ
x2x3
k1x2-k2x3
=
-x1x4
k1x1-k2x4

¼´
(k1-k2)x2x3
k1x2-k2x3
+
(k1-k2)x1x4
k1x1-k2x4
=0
£¬
´Ó¶øq+r=0£¬ËùÒÔ|q|=|r|£¬¼´|OQ|=|OR|£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÔ²·½³ÌµÃ×ÛºÏÓ¦Óã®Éæ¼°Ö±ÏßÓëÔ²µÄ¹Øϵ³£ÐèÒª°ÑÖ±Ïß·½³ÌÓëÔ²·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨ÀíÀ´½â¾öÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªµãA£¨0£¬2£©ºÍÅ×ÎïÏßy2=x+4ÉÏÁ½µãB¡¢C£¬Ê¹µÃAB¡ÍBC£¬ÇóµãCµÄ×Ý×ø±êµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªµãA£¨0£¬2£©ºÍÅ×ÎïÏßy2=x+4ÉÏÁ½µãB¡¢C£¬Ê¹µÃAB¡ÍBC£¬ÇóµãCµÄ×Ý×ø±êµÄÈ¡Öµ·¶Î§£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄê¹ã¶«Ê¡ÖÐɽÊиßÈýÕï¶ÏÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªµãA£¨0£¬-3£©£¬¶¯µãPÂú×ã|PA|=2|PO|£¬ÆäÖÐOΪ×ø±êÔ­µã£®
£¨¢ñ£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£®
£¨¢ò£©¼Ç£¨¢ñ£©ÖÐËùµÃµÄÇúÏßΪC£®¹ýÔ­µãO×÷Á½ÌõÖ±Ïßl1£ºy=k1x£¬l2£ºy=k2x·Ö±ð½»ÇúÏßCÓÚµãE£¨x1£¬y1£©¡¢F£¨x2£¬y2£©¡¢G£¨x3£¬y3£©¡¢H£¨x4£¬y4£©£¨ÆäÖÐy2£¾0£¬y4£¾0£©£®ÇóÖ¤£º£»
£¨III£©¶ÔÓÚ£¨¢ò£©ÖеÄE¡¢F¡¢G¡¢H£¬ÉèEH½»xÖáÓÚµãQ£¬GF½»xÖáÓÚµãR£®ÇóÖ¤£º|OQ|=|OR|£®£¨Ö¤Ã÷¹ý³Ì²»¿¼ÂÇEH»òGF´¹Ö±ÓÚxÖáµÄÇéÐΣ©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009Äê¹ã¶«Ê¡·ðɽÊи߿¼ÊýѧһģÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÑÖªµãA£¨0£¬-3£©£¬¶¯µãPÂú×ã|PA|=2|PO|£¬ÆäÖÐOΪ×ø±êÔ­µã£®
£¨¢ñ£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£®
£¨¢ò£©¼Ç£¨¢ñ£©ÖÐËùµÃµÄÇúÏßΪC£®¹ýÔ­µãO×÷Á½ÌõÖ±Ïßl1£ºy=k1x£¬l2£ºy=k2x·Ö±ð½»ÇúÏßCÓÚµãE£¨x1£¬y1£©¡¢F£¨x2£¬y2£©¡¢G£¨x3£¬y3£©¡¢H£¨x4£¬y4£©£¨ÆäÖÐy2£¾0£¬y4£¾0£©£®ÇóÖ¤£º£»
£¨III£©¶ÔÓÚ£¨¢ò£©ÖеÄE¡¢F¡¢G¡¢H£¬ÉèEH½»xÖáÓÚµãQ£¬GF½»xÖáÓÚµãR£®ÇóÖ¤£º|OQ|=|OR|£®£¨Ö¤Ã÷¹ý³Ì²»¿¼ÂÇEH»òGF´¹Ö±ÓÚxÖáµÄÇéÐΣ©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸