精英家教网 > 高中数学 > 题目详情

【题目】已知集合,且.

1)证明:若,则是偶数;

2)设,且,求实数的值;

3)设,求证:;并求满足的值.

【答案】1)证明见解析;(2;(3)证明见解析,.

【解析】

1)根据,代入化简,结合即可证明.

2)根据题意,,结合(1)并分类讨论即可求得的值, 代入求得的值,讨论并舍去不符合要求的的值,即可得实数的值;

3)根据题意,代入化简,并结合即可证明;化简不等式,结合(2)可知,范围内的值只能是,,即可求得的值.

1)证明: ,

所以

因为

所以原式

因为

所以偶数

原式得证

2)因为,

,所以

,

由(1)可知,

所以

,代入可得

此时,不满足,所以不成立

,代入解得,,,不满足,所以不成立;,,满足

综上,可知

3)证明:因为,所以可设

代入

成立,原式得证

对于,不等式同时除以可得

由(2)可知, 范围内,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十七世纪英国著名数学家、物理学家牛顿创立的求方程近似解的牛顿迭代法,相较于二分法更具优势,如图给出的是利用牛顿迭代法求方程x2=6的正的近似解的程序框图,若输入a=2,=0.02,则输出的结果为(
A.3
B.2.5
C.2.45
D.2.4495

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,M(x1 , y1),N(x2 , y2)是椭圆 + =1上的点,且x1x2+2y1y2=0,设动点P满足 = +2
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)若直线l:y=x+m(m≠0)与曲线C交于A,B两点,求三角形OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间[﹣5,5]内随机地取出一个数a,则恰好使1是关于x的不等式2x2+ax﹣a2<0的一个解的概率大小为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设正数x,y满足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,则实数a的取值范围是(
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.

(Ⅰ)求证:B1F⊥EC1
(Ⅱ)求二面角C1﹣BE﹣C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(
A.( ]
B.( ]
C.( ]
D.( ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,D是BC上的点,AD平分BAC,ABD面积是ADC面积的2倍
(1)(I)求
(2)(II)若AD=1,DC=,求BD和AC的长

查看答案和解析>>

同步练习册答案