【题目】已知集合,且.
(1)证明:若,则是偶数;
(2)设,且,求实数的值;
(3)设,求证:;并求满足的的值.
【答案】(1)证明见解析;(2);(3)证明见解析,.
【解析】
(1)根据,将代入化简,结合即可证明.
(2)根据题意,设,结合(1)并分类讨论即可求得的值, 代入求得的值,讨论并舍去不符合要求的的值,即可得实数的值;
(3)根据题意,设代入化简,并结合即可证明;化简不等式,结合(2)可知,在范围内的值只能是,即,即可求得的值.
(1)证明: 若,则
所以
因为
所以原式
因为
所以偶数
原式得证
(2)因为,且
则,所以
设,
由(1)可知,即
所以或
当时,代入可得
此时,不满足,所以不成立
当时,代入解得,若,则,不满足,所以不成立;若,则,满足
综上,可知
(3)证明:因为,所以可设且
则
代入
即成立,原式得证
对于,不等式同时除以可得
由(2)可知, 在范围内,
所以
即
科目:高中数学 来源: 题型:
【题目】十七世纪英国著名数学家、物理学家牛顿创立的求方程近似解的牛顿迭代法,相较于二分法更具优势,如图给出的是利用牛顿迭代法求方程x2=6的正的近似解的程序框图,若输入a=2,=0.02,则输出的结果为( )
A.3
B.2.5
C.2.45
D.2.4495
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,M(x1 , y1),N(x2 , y2)是椭圆 + =1上的点,且x1x2+2y1y2=0,设动点P满足 = +2
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)若直线l:y=x+m(m≠0)与曲线C交于A,B两点,求三角形OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设正数x,y满足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,则实数a的取值范围是( )
A.(1, ]
B.(1, ]
C.[ ,+∞)
D.[ ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.
(Ⅰ)求证:B1F⊥EC1;
(Ⅱ)求二面角C1﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为( )
A.( , ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com