精英家教网 > 高中数学 > 题目详情
下列5个正方体图形中,l是正方体的一条对角线,点M、N、P分别为其所在棱的中点,能得出直线l⊥平面MNP的所有图形的序号是(  )
A、①③④B、①④⑤
C、②④⑤D、①③⑤
考点:直线与平面垂直的判定
专题:空间位置关系与距离
分析:设定正方体的顶点如图,连结DB,AC,根据M,P分别为中点,判断出MP∥AC,由四边形ABCD为正方形,判断出AC⊥BD进而根据DD′⊥平面ABCD,AC?平面ABCD,判断出DD′⊥AC,进而根据线面垂直的判定定理推断出AC⊥平面DBB′,根据线面垂直的性质可知AC⊥DB′,利用线面垂直的判定定理推断出由MP∥AC,推断出DB′⊥MP,同理可证DB′⊥MP,DB′⊥NP,利用线面垂直的判定定理推断出DB′⊥平面MNP.④中由①中证明可知l⊥MP,根据MP∥AC,AC⊥l,推断出l⊥MP,进而根据线面垂直的判定定理推断出l⊥平面MNP,同理可证明⑤中l⊥平面MNP.
解答: 解:设定正方体的顶点如图,连结DB,AC,
∵M,P分别为中点,
∴MP∥AC,
∵四边形ABCD为正方形,
∴AC⊥BD,
∵BB′⊥平面ABCD,AC?平面ABCD,
∴BB′⊥AC,
∵BB′∩DB′=B,BB′?平面DBB′,AC?平面DBB′,
∴AC⊥平面DBB′,
∵DB′?平面DBB′,
∴AC⊥DB′,
∵MP∥AC,
∴DB′⊥MP,
同理可证DB′⊥MN,DB′⊥NP,
∵MP∩NP=P,MP?平面MNP,NP?平面MNP,
∴DB′⊥平面MNP,即l垂直于平面MNP,故①正确.
④中由①中证明可知l⊥MP,
∵MP∥AC,
AC⊥l,
∴l⊥MP,
∴l⊥平面MNP,
同理可证明⑤中l⊥平面MNP.
故选:B.
点评:本题主要考查了线面垂直的判定定理.考查了学生空间思维能力和观察能力,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列结论中正确的是(  )
A、Z⊆N⊆Q⊆R⊆C
B、N⊆Z⊆Q⊆C⊆R
C、N⊆Z⊆Q⊆R⊆C
D、R⊆N⊆Z⊆Q⊆C

查看答案和解析>>

科目:高中数学 来源: 题型:

从正方形的四个顶点及其中心这五个点中,任取两个点,则这两个点的距离不大于该正方形边长的概率为(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-2x+lnx+1.
(1)若函数f(x)在其定义域内为单调递增,求实数a的取值范围;
(2)设g(x)=mx2+4mx+3,当a=1时,不等式f(x1)≤g(x2),x1∈(0,1],x2∈(-∞,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某电视台的一个综艺栏目对六个不同的节目排演出顺序,最前只能排甲或乙,最后不能排甲,则不同的排法共有(  )
A、192种B、216种
C、240种D、288种

查看答案和解析>>

科目:高中数学 来源: 题型:

某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为(  )
A、4320B、2400
C、2160D、1320

查看答案和解析>>

科目:高中数学 来源: 题型:

春节过后购物旺季随之转向淡季,商家均采用各种促销方法促销,某商场规定:凡购物均可获得一次抽奖机会,抽奖方法为:从编号1-6的相同小球中任意抽取一个小球记下编号后放回,若抽到编号为6的小球则再获一次机会,最多抽取二次.
(1)求顾客恰有两次抽奖机会的概率;
(2)若抽得小球编号之和大于10为中奖,求中奖概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点(1,
3
2
),它的左焦点为F(-c,0),直线l1:y=x-c与椭圆C将于A,B两点,△ABF的周长为a3
(Ⅰ)求椭圆C的方程;
(Ⅱ)若点P是直线l2:y=x-3c上的一个动点,经过点P作椭圆C的两条切线PM,PN,M,N分别为切点,求证:直线MN过定点,并求出此定点坐标.
(注:经过椭圆:
x2
a2
+
y2
b2
=1(a>b>0)上一点(x0,y0)的椭圆的切线方程为
x0x
a2
+
y0y
b2
=1)

查看答案和解析>>

科目:高中数学 来源: 题型:

x+y≤5
2x+y≤6
(x≥0,y≥0),则目标函数k=6x+8y取最大值时点的坐标为
 

查看答案和解析>>

同步练习册答案