精英家教网 > 高中数学 > 题目详情

【题目】若数列是公差为2的等差数列,数列满足b1=1,b2=2,且anbnbnnbn1.

(1)求数列,的通项公式;

(2)设数列满足,数列的前n项和为,若不等式

对一切n∈N*恒成立,求实数λ的取值范围.

【答案】(1);(2)(-2,3)。

【解析】

(1)对于anbnbnnbn1.令n=1可求得a1=1,由等差数列的通项公式可求得an=2n-1。进而anbnbnnbn1可变为2bnbn+1,可得数列为等比数列,由等比数列的通项公式可求得bn=2n-1. (2)根据已知条件应先求得cn,由特点根据错位相减法可求得Tn=4-.则不等式(-1)nλ<Tn,化为(-1)nλ<4-,对n分奇数、偶数讨论,根据不等式恒成立可求实数λ的取值范围。

(1) ∵数列{bn}满足b1=1,b2=2,且anbnbnnbn+1.

n=1时,a1+1=2,解得a1=1.

又数列{an}是公差为2的等差数列,

an=1+2(n-1)=2n-1.

∴ 2nbnnbn+1,化为2bnbn+1

∴数列{bn}是首项为1,公比为2的等比数列.

bn=2n-1.

(2)由数列{cn}满足cn,数列{cn}的前n项和为

Tn=1++…+

Tn+…+

两式作差,得

Tn=1++…+=2-

Tn=4-.

不等式(-1)nλ<Tn,化为(-1)nλ<4-

n=2k(k∈N*)时,λ<4-,取n=2,

λ<3.

n=2k-1(k∈N*)时,-λ<4-,取n=1,

λ>-2.

综上可得:实数λ的取值范围是(-2,3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈[﹣2,0],使得f(x2)≤g(x1)成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列三种说法:

①命题p:x0∈R,tan x0=1,命题q:x∈R,x2-x+1>0,则命题“p∧()”是假命题.

②已知直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=-3.

③命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”.

其中所有正确说法的序号为________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和Snn2n .

(1)求数列的通项公式an

(2)令 ,求数列{bn}的前n项和为Tn .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:

测试指标

机床甲

8

12

40

32

8

机床乙

7

18

40

29

6

(1)试分别估计甲机床、乙机床生产的零件为优品的概率;

(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);

(3)从甲、乙机床生产的零件指标在内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个袋中装有四个形状大小完全相同的编号为1,2,3,4的球,从袋中随机抽取一个球,将其编号记为m,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为n,则关于x的一元二次方程无实根的概率为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学在开学季准备销售一种盒饭进行试创业,在一个开学季内,每售出1盒该盒饭获利润10元,未售出的产品,每盒亏损5元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了150盒该产品,以x(单位:盒,)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.

(1)根据直方图估计这个开学季内市场需求量x的平均数和众数;

(2)将y表示为x的函数;

(3)根据频率分布直方图估计利润y不少于1050元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱A1B1C1﹣ABC中,侧棱与底面垂直,AB=BC=AA1 , ∠ABC=90°,M是BC的中点.

(1)求证:A1B∥平面AMC1
(2)求平面A1B1M与平面AMC1所成角的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案