精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a(x-
1
x
)-2lnx(a∈R).
(1)求函数f(x)的单调区间;
(2)设函数g(x)=-
a
x
.若至少存在一个x0∈[1,4],使得f(x0)=g(x0)成立,求实数a的取值范围.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性
专题:导数的综合应用
分析:(1)先求出函数的导数,通过讨论①当a≤0时②当0<a<1时③当a≥1时,从而得出函数的单调区间;
(2)存在一个x0∈[1,4]使得f(x0)>g(x0),则ax0>2lnx0,利用参数分离法,利用导数易求其最小值.
解答: 解:(1)函数的定义域为(0,+∞),f′(x)a(1+
1
x2
)-
2
x
=
ax2-2x+a
x2
. …(1分)
设h(x)ax2-2x+a,
①当a=0时,h(x)=-2x<0,h(x)=ax2-2x+a<0在(0,+∞)上恒成立,
则f(x)<0在(0,+∞)上恒成立,此时f(x)在(0,+∞)上单调递减.…(2分)
②当a≠0时,
(I)由△=4-4a2=0得a=±1.
当a=1时,h(x)=a2-2x+1=x2-2x+1=(x-1)2≥0恒成立,
∴f(x)在(0,+∞)上单调递增.
当a=-1时,h(x)=ax2-2x+a=-x2+2x-1=-(x-1)2≤0恒成立,
∴f(x)在(0,+∞)上单调递减.…(4分)
(II)由△=4-4a2<0,得a<-1或a>1;.
当a<-1时,开口向下,h(x)=ax2-2x+a<0在(0,+∞)上恒成立,
则f(x)<0在(0,+∞)上恒成立,此时f(x)在(0,+∞)上单调递减.…(5分)
当a>1,开口向上,h(x≥0)在(0,+∞)上恒成立,则f′(x)≥0在(0,+∞)上恒成立,
此时f(x) 在(0,+∞)上单调递增…(6分)
(III)由△=4-4a2>0得-1<a<1
若0<a<1,开口向上,x1=
1-
1-a2
a
,x2=
1+
1-a2
a

且x1+x2=
2
a
>0,x1x2=1,x1x2都在(0,+∞)上..…(7分)
由f(x)>0,即h(x)>0,得x<
1-
1-a2
a
或x>
1+
1-a2
a

由f′(x)<0,即h(x)<0,得
1-
1-a2
a
<x<
1+
1-a2
a

所以函数f(x)的单调递增区间为(0,
1-
1-a2
a
)和(
1+
1-a2
a
,+∞),
单调递减区间为(
1
1-a2
a
1+
1-a2
a
).   
当-1<a<0时,抛物线开口向下,x1<0,x2<0,h(x)=ax22-2x+a在(0,+∞)
恒成立,即f′(x)<0在(0,+∞)恒成立,所以f(x)在(0,+∞)单调递减.…(9分)
综上所述:
a≤00<a<1a≥1
(0,+∞)(0,x1(x1,x2(x2,+∞)(0,+∞)
递减递增递减递增递增
其中 x1=
1
1-a2
a
,x2=
1+
1-a2
a
   …(10分)
(2)因为存在一个x1∈[1,4]使得f(x0)>g(x0),
则ax0>2lnx0,等价于a>
2lnx0
x0

令F(x)=
2lnx
x
,等价于“当x∈[1,4]时,a>F(x)min.…(11分)
对F(x)求导,得F′(x)=
2(1-lnx)
x2
.…(12分)
因为x∈[1,4],由F′(x)>0,∴1<x<e,F′(x)<0,∴e<x<4所以F(x)在[1,e]上单调递增,在[e,4]上单调递减.…(13分)
由于F(4)>F(1),所以F(x)min=F(1)=0,因此a>0.…(14分)
点评:本题考查导数的几何意义、导数研究函数单调性及求函数的最值问题,考查学生分析问题解决问题的能力,对于“能成立”问题及“恒成立”问题往往转化为函数最值解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图程序框图中,若输出S=
3
2
+
3
,则p的值为(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数的单调区间y=(
1
3
)
x2-x

查看答案和解析>>

科目:高中数学 来源: 题型:

袋子中放有大小和形状相同的4个小球,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球2个,从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b,记事件A表示“a+b=2”,则事件A的概率为(  )
A、
1
5
B、
3
4
C、
1
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中既是偶函数又在(0,+∞)上是增函数的是(  )
A、y=x3
B、y=|x|+1
C、y=-x2+1
D、y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
是夹角为60°的两个单位向量,
a
=3
e1
-2
e2
b
=2
e1
-3
e2

(1)在坐标纸中利用直尺圆规画出
a
b

(2)求
a
+
b
a
-
b
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

对某电子元件寿命进行追踪调查,情况如下:
寿命(h)l00~200200~300300~400400~500500~600
个数2030804030
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计寿命在100~400h以内的电子元件在总体中占的比例;
(4)估计寿命在450h以上的电子元件在总体中占的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则
BC
AD
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在(-∞,+∞)内有意义.对于给定的正数K,已知函数fK(x)=
f(x),f(x)≤K
K,f(x)>K
,取函数f(x)=3-x-e-x.若对任意的x∈(-∞,+∞),恒有fK=f(x),则K的最小值为
 

查看答案和解析>>

同步练习册答案