精英家教网 > 高中数学 > 题目详情

【题目】为配合“2019双十二促销活动,某公司的四个商品派送点如图环形分布,并且公司给四个派送点准备某种商品各50.根据平台数据中心统计发现,需要将发送给四个派送点的商品数调整为40455461,但调整只能在相邻派送点进行,每次调动可以调整1件商品.为完成调整,则(

A.最少需要16次调动,有2种可行方案

B.最少需要15次调动,有1种可行方案

C.最少需要16次调动,有1种可行方案

D.最少需要15次调动,有2种可行方案

【答案】A

【解析】

根据题意得出有两种可行的方案,即可得出正确选项.

根据题意AB两处共需向CD两处调15个商品,这15个商品应给D11个商品,C4个商品,按照调动次数最少的原则,有以下两种方案:

方案一:A调动11个给DB调动1个给AB调动4个给C,共调动16次;

方案二:A调动10个给DB调动5个给CC调动1个给D,共调动16次;

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,已知有且仅有3个零点,下列结论正确的是(

A.上存在,,满足

B.有且仅有1个最小值点

C.单调递增

D.的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)上的两个动点,焦点为F.线段的中点为,且点到抛物线的焦点F的距离之和为8

1)求抛物线的标准方程;

2)若线段的垂直平分线与x轴交于点C,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种笼具由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

1)求这种笼具的体积(结果精确到0.1);

2)现要使用一种纱网材料制作50笼具,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 其中R …为自然对数的底数

)当时, 恒成立,求的取值范围;

)求证: (参考数据: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等,劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,的面积.将,称为基尼系数.对于下列说法:

越小,则国民分配越公平;

②设劳伦茨曲线对应的函数为,则对,均有

③若某国家某年的劳伦茨曲线近似为,则

其中正确的是:(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数上的单调性;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的普通方程为在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为写出圆C的参数方程和直线l的直角坐标方程;设直线lx轴和y轴的交点分别为ABP为圆C上的任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“挑战不可能”的电视节目上,甲、乙、丙三个人组成的解密团队参加一项解密挑战活动,规则是由密码专家给出题目,然后由3个人依次出场解密,每人限定时间是1分钟内,否则派下一个人.3个人中只要有一人解密正确,则认为该团队挑战成功,否则挑战失败.根据甲以往解密测试情况,抽取了甲100次的测试记录,绘制了如图所示的频率分布直方图.

1)若甲解密成功所需时间的中位数为47,求的值,并求出甲在1分钟内解密成功的频率;

2)在“挑战不可能”节目上由于来自各方及自身的心理压力,甲,乙,丙解密成功的概率分别为,其中表示第个出场选手解密成功的概率,并且定义为甲抽样中解密成功的频率代替,各人是否解密成功相互独立.

①求该团队挑战成功的概率;

②该团队以从小到大的顺序按排甲、乙、丙三个人上场解密,求团队挑战成功所需派出的人数的可能值及其概率.

查看答案和解析>>

同步练习册答案