精英家教网 > 高中数学 > 题目详情

已知椭圆),过椭圆中心O作互相垂直的两条弦AC、BD,设点A、B的离心角分别为,求的取值范围。


解析:

当AC、BD与坐标轴重合时,;当AC、BD与坐标轴不重合时,令,则,∴.

由题意知,,,

,.

.

当且仅当,即BD的倾斜角为时,上式取等号。∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆是椭圆C的“伴随圆”. 已知椭圆C的两个焦点分别是F1(-
2
,0)、F2(
2
,0)
,椭圆C上一动点M1满足|
M1F1
|+|
M1F
2
|=2
3

(Ⅰ)求椭圆C及其“伴随圆”的方程
(Ⅱ)试探究y轴上是否存在点P(0,m)(m<0),使得过点P作直线l与椭圆C只有一个交点,且l截椭圆C的“伴随圆”所得的弦长为2
2
.若存在,请求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,左焦点F1(-2,0),过左焦点且垂直于长轴的弦长为
2
6
3

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过(-3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•闵行区二模)已知椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)
,长轴两端点为A、B,短轴上端点为C.
(1)若椭圆焦点坐标为F1(2
2
,0)、F2(-2
2
,0)
,点M在椭圆上运动,当△ABM的最大面积为3时,求其椭圆方程;
(2)对于(1)中的椭圆方程,作以C为直角顶点的内接于椭圆的等腰直角三角形CDE,设直线CE的斜率为k(k<0),试求k满足的关系等式;
(3)过C任作
CP
垂直于
CQ
,点P、Q在椭圆上,试问在y轴上是否存在一点T使得直线TP的斜率与TQ的斜率之积为定值,如果存在,找出点T的坐标和定值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>c>0)
的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线.切点为T,且|PT|的最小值为
3
2
(a-c)
,则椭圆的离心率e的取值范围是
[
3
5
2
2
)
[
3
5
2
2
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在原点,左焦点F1(-2,0),过左焦点且垂直于长轴的弦长为
2
6
3

(Ⅰ)求椭圆的标准方程;
(Ⅱ)过(-3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.

查看答案和解析>>

同步练习册答案