精英家教网 > 高中数学 > 题目详情
已知函数,对任意,都有,则函数的最大值与最小值之和是         .
3

试题分析:因为,,所以有:设x∈R,t>0,x+t>x,则

∴f(x)在R上是单调函数,g(x) 在R上是单调函数。
令x=y=0,则f(0)+f(0)=f(0+0)+m,∴f(0)=m
令x=0,y=1,则,f(1)=f(0)+f(1)+m,所以,f(0)=-m,故,m=0.
∴g(x)min +g(x)max =f(-1)+m++f(1)+m+,2m+=3.
点评:中档题,利用抽象函数,研究函数的单调性,从而认识到函数取到最值的情况。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数对于任意的,导函数都存在,且满足≤0,则必有(    )
A.>B.
C.<D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)求当时,函数的表达式;
(2)作出函数的图象,并指出其单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数,若则函数的最小值是     (      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ) 求函数在点处的切线方程;
(Ⅱ) 若函数在区间上均为增函数,求的取值范围;
(Ⅲ) 若方程有唯一解,试求实数的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,若函数处的切线方程为
(1)求的值;
(2)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)在定义域R内可导,若f(x)=f(4-x),且当x∈(-∞,2)时,(x-2)·f′(x)<0,设af(4),bf(1), cf(-1),则a,b,c由小到大排列为  (    )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间;
(Ⅱ)若对于都有成立,试求的取值范围;
(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数=,若互不相等的实数满足,则 的取值范围是   

查看答案和解析>>

同步练习册答案