精英家教网 > 高中数学 > 题目详情

【题目】已知,若存在三个不同实数使得,则的取值范围是(

A.B.C.D.01

【答案】C

【解析】

先画出分段函数fx)的图象,然后根据图象分析abc的取值范围,再根据对数函数以及绝对值函数的性质得出bc1,即可得到abc的取值范围.

由题意,画出函数fx)的图象大致如图所示:

∵存在三个不同实数abc,使得fa)=fb)=fc),可假设abc

∴根据函数图象,可知:﹣2a00b1c1.又∵fb)=fc),

|log2019b||log2019c|,即:﹣log2019blog2019c.∴log2019b+log2019c0

log2019bc0,即bc1.∴abca.∵﹣2a0,∴﹣2abc0

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义函数,其中x为自变量,a为常数.

1)若当x[02]时,函数fax)的最小值为﹣1,求a的值;

2)设全集UR,集合A{x|f3x≥0}B{x|fax+fa2x)=f22},且(UAB中,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,直线的参数方程为(t为参数).

(1)写出曲线的参数方程和直线的普通方程;

(2)已知点是曲线上一点,,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数的图象向右平移一个单位,所得图象与函数的图象关于直线对称;已知偶函数满足,当时,;若函数有五个零点,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数都在处取得最小值.

(1)求的值;

(2)设函数的极值点之和落在区间,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为矩形,侧面底面与平面所成的角为.

1)证明:

2)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线 经过伸缩变换后得到曲线.以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求出曲线的参数方程;

(Ⅱ)若分别是曲线上的动点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关, 现收集了该种药用昆虫的6组观测数据如下表:

温度x/C

21

23

24

27

29

32

产卵数y/

6

11

20

27

57

77

经计算得:

,线性回归模型的残差平方和e8.0605≈3167,其中xi, yi分别为观测数据中的温度和产卵数,i=1, 2, 3, 4, 5, 6.

()若用线性回归模型,求y关于x的回归方程=x+(精确到0.1);

()若用非线性回归模型求得y关于x的回归方程为=0.06e0.2303x,且相关指数R2=0.9522.

( i )试与()中的回归模型相比,用R2说明哪种模型的拟合效果更好.

( ii )用拟合效果好的模型预测温度为35C时该种药用昆虫的产卵数(结果取整数).

附:一组数据(x1,y1), (x2,y2), ...,(xn,yn ), 其回归直线=x+的斜率和截距的最小二乘估计为

=;相关指数R2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,PA⊥平面ABCDABADACCD,∠ABC=60°,PAABBCEPC的中点.证明:

(1)CDAE

(2)PD⊥平面ABE.

查看答案和解析>>

同步练习册答案