精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分12分)

设函数fx=x+ax2+blnx,曲线y=fx)过P1,0),且在P点处的切斜线率为2.

I)求ab的值;

II)证明:f(x)≤2x-2

【答案】

【解析】

试题分析: (1)f ′(x)12ax.1分)

由已知条件得

解得a=-1b3. 4分)

(2)f(x)的定义域为(0,+∞)

(1)f(x)xx23lnx.

g(x)f(x)(2x2)2xx23lnx,则

g′(x)=-12x=-. 6分)

0<x<1时,g′(x)>0;当x>1时,g′(x)<0.

所以g(x)(0,1)单调递增,在(1,+∞)单调递减.(8分)

g(1)0,故当x>0时,g(x)≤0,即f(x)≤2x2. 10分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分14分)

设函数,其中

( I )若函数图象恒过定点P,且点P的图象上,求m的值;

(Ⅱ)时,设,讨论的单调性;

(Ⅲ)(I)的条件下,设,曲线上是否存在两点PQ

使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}是以d(d≠0)为公差的等差数列,a1=2,且a2 , a4 , a8成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=an2n(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.

(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?

(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一同学在电脑中打出若干个圈:○●○○●○○○●○○○○●○○○○○●若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前2012个圈中的●的个数是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α,β,cos β=-,sin(α+β)=.

(1)tan 2β的值;

(2)α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数的定义域为 )的定义域为.

(1)求

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在上的可导函数,其导函数为,且有,则不等式 的解集为

A. B. C. D.

查看答案和解析>>

同步练习册答案